Upload folder using huggingface_hub
Browse files- 1_Dense/config.json +1 -0
- 1_Dense/model.safetensors +3 -0
- README.md +1038 -0
- config.json +49 -0
- config_sentence_transformers.json +49 -0
- model.safetensors +3 -0
- modules.json +14 -0
- optimizer.pt +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +31 -0
- tokenizer.json +0 -0
- tokenizer_config.json +86 -0
- trainer_state.json +0 -0
- training_args.bin +3 -0
1_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 768, "out_features": 128, "bias": false, "activation_function": "torch.nn.modules.linear.Identity"}
|
1_Dense/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8b7e2fbd275234a7f2906c009aa95d0ee1d86c19d2e6ea5ad37068d75ae1491
|
3 |
+
size 393304
|
README.md
ADDED
@@ -0,0 +1,1038 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- ColBERT
|
6 |
+
- PyLate
|
7 |
+
- sentence-transformers
|
8 |
+
- sentence-similarity
|
9 |
+
- feature-extraction
|
10 |
+
- generated_from_trainer
|
11 |
+
- dataset_size:443147
|
12 |
+
- loss:Distillation
|
13 |
+
base_model: artiwise-ai/modernbert-base-tr-uncased
|
14 |
+
datasets:
|
15 |
+
- Speedsy/msmarco-cleaned-gemini-bge-tr-uncased
|
16 |
+
pipeline_tag: sentence-similarity
|
17 |
+
library_name: PyLate
|
18 |
+
metrics:
|
19 |
+
- MaxSim_accuracy@1
|
20 |
+
- MaxSim_accuracy@3
|
21 |
+
- MaxSim_accuracy@5
|
22 |
+
- MaxSim_accuracy@10
|
23 |
+
- MaxSim_precision@1
|
24 |
+
- MaxSim_precision@3
|
25 |
+
- MaxSim_precision@5
|
26 |
+
- MaxSim_precision@10
|
27 |
+
- MaxSim_recall@1
|
28 |
+
- MaxSim_recall@3
|
29 |
+
- MaxSim_recall@5
|
30 |
+
- MaxSim_recall@10
|
31 |
+
- MaxSim_ndcg@10
|
32 |
+
- MaxSim_mrr@10
|
33 |
+
- MaxSim_map@100
|
34 |
+
model-index:
|
35 |
+
- name: PyLate model based on artiwise-ai/modernbert-base-tr-uncased
|
36 |
+
results:
|
37 |
+
- task:
|
38 |
+
type: py-late-information-retrieval
|
39 |
+
name: Py Late Information Retrieval
|
40 |
+
dataset:
|
41 |
+
name: NanoDBPedia
|
42 |
+
type: NanoDBPedia
|
43 |
+
metrics:
|
44 |
+
- type: MaxSim_accuracy@1
|
45 |
+
value: 0.8
|
46 |
+
name: Maxsim Accuracy@1
|
47 |
+
- type: MaxSim_accuracy@3
|
48 |
+
value: 0.92
|
49 |
+
name: Maxsim Accuracy@3
|
50 |
+
- type: MaxSim_accuracy@5
|
51 |
+
value: 0.96
|
52 |
+
name: Maxsim Accuracy@5
|
53 |
+
- type: MaxSim_accuracy@10
|
54 |
+
value: 1.0
|
55 |
+
name: Maxsim Accuracy@10
|
56 |
+
- type: MaxSim_precision@1
|
57 |
+
value: 0.8
|
58 |
+
name: Maxsim Precision@1
|
59 |
+
- type: MaxSim_precision@3
|
60 |
+
value: 0.6733333333333333
|
61 |
+
name: Maxsim Precision@3
|
62 |
+
- type: MaxSim_precision@5
|
63 |
+
value: 0.6
|
64 |
+
name: Maxsim Precision@5
|
65 |
+
- type: MaxSim_precision@10
|
66 |
+
value: 0.548
|
67 |
+
name: Maxsim Precision@10
|
68 |
+
- type: MaxSim_recall@1
|
69 |
+
value: 0.08578717061354299
|
70 |
+
name: Maxsim Recall@1
|
71 |
+
- type: MaxSim_recall@3
|
72 |
+
value: 0.1830130267260073
|
73 |
+
name: Maxsim Recall@3
|
74 |
+
- type: MaxSim_recall@5
|
75 |
+
value: 0.2593375700877878
|
76 |
+
name: Maxsim Recall@5
|
77 |
+
- type: MaxSim_recall@10
|
78 |
+
value: 0.39135854315858964
|
79 |
+
name: Maxsim Recall@10
|
80 |
+
- type: MaxSim_ndcg@10
|
81 |
+
value: 0.6725979752170759
|
82 |
+
name: Maxsim Ndcg@10
|
83 |
+
- type: MaxSim_mrr@10
|
84 |
+
value: 0.8711111111111113
|
85 |
+
name: Maxsim Mrr@10
|
86 |
+
- type: MaxSim_map@100
|
87 |
+
value: 0.5248067100703537
|
88 |
+
name: Maxsim Map@100
|
89 |
+
- task:
|
90 |
+
type: py-late-information-retrieval
|
91 |
+
name: Py Late Information Retrieval
|
92 |
+
dataset:
|
93 |
+
name: NanoFiQA2018
|
94 |
+
type: NanoFiQA2018
|
95 |
+
metrics:
|
96 |
+
- type: MaxSim_accuracy@1
|
97 |
+
value: 0.46
|
98 |
+
name: Maxsim Accuracy@1
|
99 |
+
- type: MaxSim_accuracy@3
|
100 |
+
value: 0.68
|
101 |
+
name: Maxsim Accuracy@3
|
102 |
+
- type: MaxSim_accuracy@5
|
103 |
+
value: 0.72
|
104 |
+
name: Maxsim Accuracy@5
|
105 |
+
- type: MaxSim_accuracy@10
|
106 |
+
value: 0.72
|
107 |
+
name: Maxsim Accuracy@10
|
108 |
+
- type: MaxSim_precision@1
|
109 |
+
value: 0.46
|
110 |
+
name: Maxsim Precision@1
|
111 |
+
- type: MaxSim_precision@3
|
112 |
+
value: 0.3
|
113 |
+
name: Maxsim Precision@3
|
114 |
+
- type: MaxSim_precision@5
|
115 |
+
value: 0.22399999999999998
|
116 |
+
name: Maxsim Precision@5
|
117 |
+
- type: MaxSim_precision@10
|
118 |
+
value: 0.128
|
119 |
+
name: Maxsim Precision@10
|
120 |
+
- type: MaxSim_recall@1
|
121 |
+
value: 0.23257936507936505
|
122 |
+
name: Maxsim Recall@1
|
123 |
+
- type: MaxSim_recall@3
|
124 |
+
value: 0.4590714285714285
|
125 |
+
name: Maxsim Recall@3
|
126 |
+
- type: MaxSim_recall@5
|
127 |
+
value: 0.5128174603174602
|
128 |
+
name: Maxsim Recall@5
|
129 |
+
- type: MaxSim_recall@10
|
130 |
+
value: 0.5457063492063492
|
131 |
+
name: Maxsim Recall@10
|
132 |
+
- type: MaxSim_ndcg@10
|
133 |
+
value: 0.4798674129130085
|
134 |
+
name: Maxsim Ndcg@10
|
135 |
+
- type: MaxSim_mrr@10
|
136 |
+
value: 0.5623333333333332
|
137 |
+
name: Maxsim Mrr@10
|
138 |
+
- type: MaxSim_map@100
|
139 |
+
value: 0.4143816306136937
|
140 |
+
name: Maxsim Map@100
|
141 |
+
- task:
|
142 |
+
type: py-late-information-retrieval
|
143 |
+
name: Py Late Information Retrieval
|
144 |
+
dataset:
|
145 |
+
name: NanoHotpotQA
|
146 |
+
type: NanoHotpotQA
|
147 |
+
metrics:
|
148 |
+
- type: MaxSim_accuracy@1
|
149 |
+
value: 0.9
|
150 |
+
name: Maxsim Accuracy@1
|
151 |
+
- type: MaxSim_accuracy@3
|
152 |
+
value: 1.0
|
153 |
+
name: Maxsim Accuracy@3
|
154 |
+
- type: MaxSim_accuracy@5
|
155 |
+
value: 1.0
|
156 |
+
name: Maxsim Accuracy@5
|
157 |
+
- type: MaxSim_accuracy@10
|
158 |
+
value: 1.0
|
159 |
+
name: Maxsim Accuracy@10
|
160 |
+
- type: MaxSim_precision@1
|
161 |
+
value: 0.9
|
162 |
+
name: Maxsim Precision@1
|
163 |
+
- type: MaxSim_precision@3
|
164 |
+
value: 0.5133333333333333
|
165 |
+
name: Maxsim Precision@3
|
166 |
+
- type: MaxSim_precision@5
|
167 |
+
value: 0.32799999999999996
|
168 |
+
name: Maxsim Precision@5
|
169 |
+
- type: MaxSim_precision@10
|
170 |
+
value: 0.16799999999999998
|
171 |
+
name: Maxsim Precision@10
|
172 |
+
- type: MaxSim_recall@1
|
173 |
+
value: 0.45
|
174 |
+
name: Maxsim Recall@1
|
175 |
+
- type: MaxSim_recall@3
|
176 |
+
value: 0.77
|
177 |
+
name: Maxsim Recall@3
|
178 |
+
- type: MaxSim_recall@5
|
179 |
+
value: 0.82
|
180 |
+
name: Maxsim Recall@5
|
181 |
+
- type: MaxSim_recall@10
|
182 |
+
value: 0.84
|
183 |
+
name: Maxsim Recall@10
|
184 |
+
- type: MaxSim_ndcg@10
|
185 |
+
value: 0.8249212341756258
|
186 |
+
name: Maxsim Ndcg@10
|
187 |
+
- type: MaxSim_mrr@10
|
188 |
+
value: 0.9466666666666668
|
189 |
+
name: Maxsim Mrr@10
|
190 |
+
- type: MaxSim_map@100
|
191 |
+
value: 0.7682039396944715
|
192 |
+
name: Maxsim Map@100
|
193 |
+
- task:
|
194 |
+
type: py-late-information-retrieval
|
195 |
+
name: Py Late Information Retrieval
|
196 |
+
dataset:
|
197 |
+
name: NanoMSMARCO
|
198 |
+
type: NanoMSMARCO
|
199 |
+
metrics:
|
200 |
+
- type: MaxSim_accuracy@1
|
201 |
+
value: 0.46
|
202 |
+
name: Maxsim Accuracy@1
|
203 |
+
- type: MaxSim_accuracy@3
|
204 |
+
value: 0.62
|
205 |
+
name: Maxsim Accuracy@3
|
206 |
+
- type: MaxSim_accuracy@5
|
207 |
+
value: 0.7
|
208 |
+
name: Maxsim Accuracy@5
|
209 |
+
- type: MaxSim_accuracy@10
|
210 |
+
value: 0.82
|
211 |
+
name: Maxsim Accuracy@10
|
212 |
+
- type: MaxSim_precision@1
|
213 |
+
value: 0.46
|
214 |
+
name: Maxsim Precision@1
|
215 |
+
- type: MaxSim_precision@3
|
216 |
+
value: 0.20666666666666667
|
217 |
+
name: Maxsim Precision@3
|
218 |
+
- type: MaxSim_precision@5
|
219 |
+
value: 0.14
|
220 |
+
name: Maxsim Precision@5
|
221 |
+
- type: MaxSim_precision@10
|
222 |
+
value: 0.08199999999999999
|
223 |
+
name: Maxsim Precision@10
|
224 |
+
- type: MaxSim_recall@1
|
225 |
+
value: 0.46
|
226 |
+
name: Maxsim Recall@1
|
227 |
+
- type: MaxSim_recall@3
|
228 |
+
value: 0.62
|
229 |
+
name: Maxsim Recall@3
|
230 |
+
- type: MaxSim_recall@5
|
231 |
+
value: 0.7
|
232 |
+
name: Maxsim Recall@5
|
233 |
+
- type: MaxSim_recall@10
|
234 |
+
value: 0.82
|
235 |
+
name: Maxsim Recall@10
|
236 |
+
- type: MaxSim_ndcg@10
|
237 |
+
value: 0.6299271879198127
|
238 |
+
name: Maxsim Ndcg@10
|
239 |
+
- type: MaxSim_mrr@10
|
240 |
+
value: 0.5706666666666667
|
241 |
+
name: Maxsim Mrr@10
|
242 |
+
- type: MaxSim_map@100
|
243 |
+
value: 0.5763825115906536
|
244 |
+
name: Maxsim Map@100
|
245 |
+
- task:
|
246 |
+
type: py-late-information-retrieval
|
247 |
+
name: Py Late Information Retrieval
|
248 |
+
dataset:
|
249 |
+
name: NanoNQ
|
250 |
+
type: NanoNQ
|
251 |
+
metrics:
|
252 |
+
- type: MaxSim_accuracy@1
|
253 |
+
value: 0.58
|
254 |
+
name: Maxsim Accuracy@1
|
255 |
+
- type: MaxSim_accuracy@3
|
256 |
+
value: 0.68
|
257 |
+
name: Maxsim Accuracy@3
|
258 |
+
- type: MaxSim_accuracy@5
|
259 |
+
value: 0.78
|
260 |
+
name: Maxsim Accuracy@5
|
261 |
+
- type: MaxSim_accuracy@10
|
262 |
+
value: 0.82
|
263 |
+
name: Maxsim Accuracy@10
|
264 |
+
- type: MaxSim_precision@1
|
265 |
+
value: 0.58
|
266 |
+
name: Maxsim Precision@1
|
267 |
+
- type: MaxSim_precision@3
|
268 |
+
value: 0.2333333333333333
|
269 |
+
name: Maxsim Precision@3
|
270 |
+
- type: MaxSim_precision@5
|
271 |
+
value: 0.16399999999999998
|
272 |
+
name: Maxsim Precision@5
|
273 |
+
- type: MaxSim_precision@10
|
274 |
+
value: 0.088
|
275 |
+
name: Maxsim Precision@10
|
276 |
+
- type: MaxSim_recall@1
|
277 |
+
value: 0.57
|
278 |
+
name: Maxsim Recall@1
|
279 |
+
- type: MaxSim_recall@3
|
280 |
+
value: 0.67
|
281 |
+
name: Maxsim Recall@3
|
282 |
+
- type: MaxSim_recall@5
|
283 |
+
value: 0.75
|
284 |
+
name: Maxsim Recall@5
|
285 |
+
- type: MaxSim_recall@10
|
286 |
+
value: 0.8
|
287 |
+
name: Maxsim Recall@10
|
288 |
+
- type: MaxSim_ndcg@10
|
289 |
+
value: 0.6865185478036829
|
290 |
+
name: Maxsim Ndcg@10
|
291 |
+
- type: MaxSim_mrr@10
|
292 |
+
value: 0.6540238095238096
|
293 |
+
name: Maxsim Mrr@10
|
294 |
+
- type: MaxSim_map@100
|
295 |
+
value: 0.6518842133610925
|
296 |
+
name: Maxsim Map@100
|
297 |
+
- task:
|
298 |
+
type: py-late-information-retrieval
|
299 |
+
name: Py Late Information Retrieval
|
300 |
+
dataset:
|
301 |
+
name: NanoSCIDOCS
|
302 |
+
type: NanoSCIDOCS
|
303 |
+
metrics:
|
304 |
+
- type: MaxSim_accuracy@1
|
305 |
+
value: 0.42
|
306 |
+
name: Maxsim Accuracy@1
|
307 |
+
- type: MaxSim_accuracy@3
|
308 |
+
value: 0.6
|
309 |
+
name: Maxsim Accuracy@3
|
310 |
+
- type: MaxSim_accuracy@5
|
311 |
+
value: 0.64
|
312 |
+
name: Maxsim Accuracy@5
|
313 |
+
- type: MaxSim_accuracy@10
|
314 |
+
value: 0.8
|
315 |
+
name: Maxsim Accuracy@10
|
316 |
+
- type: MaxSim_precision@1
|
317 |
+
value: 0.42
|
318 |
+
name: Maxsim Precision@1
|
319 |
+
- type: MaxSim_precision@3
|
320 |
+
value: 0.2866666666666666
|
321 |
+
name: Maxsim Precision@3
|
322 |
+
- type: MaxSim_precision@5
|
323 |
+
value: 0.22399999999999998
|
324 |
+
name: Maxsim Precision@5
|
325 |
+
- type: MaxSim_precision@10
|
326 |
+
value: 0.158
|
327 |
+
name: Maxsim Precision@10
|
328 |
+
- type: MaxSim_recall@1
|
329 |
+
value: 0.08866666666666667
|
330 |
+
name: Maxsim Recall@1
|
331 |
+
- type: MaxSim_recall@3
|
332 |
+
value: 0.17766666666666667
|
333 |
+
name: Maxsim Recall@3
|
334 |
+
- type: MaxSim_recall@5
|
335 |
+
value: 0.2306666666666667
|
336 |
+
name: Maxsim Recall@5
|
337 |
+
- type: MaxSim_recall@10
|
338 |
+
value: 0.32466666666666666
|
339 |
+
name: Maxsim Recall@10
|
340 |
+
- type: MaxSim_ndcg@10
|
341 |
+
value: 0.3241741723269819
|
342 |
+
name: Maxsim Ndcg@10
|
343 |
+
- type: MaxSim_mrr@10
|
344 |
+
value: 0.5367777777777778
|
345 |
+
name: Maxsim Mrr@10
|
346 |
+
- type: MaxSim_map@100
|
347 |
+
value: 0.24410449875234425
|
348 |
+
name: Maxsim Map@100
|
349 |
+
- task:
|
350 |
+
type: pylate-custom-nano-beir
|
351 |
+
name: Pylate Custom Nano BEIR
|
352 |
+
dataset:
|
353 |
+
name: NanoBEIR mean
|
354 |
+
type: NanoBEIR_mean
|
355 |
+
metrics:
|
356 |
+
- type: MaxSim_accuracy@1
|
357 |
+
value: 0.6033333333333334
|
358 |
+
name: Maxsim Accuracy@1
|
359 |
+
- type: MaxSim_accuracy@3
|
360 |
+
value: 0.75
|
361 |
+
name: Maxsim Accuracy@3
|
362 |
+
- type: MaxSim_accuracy@5
|
363 |
+
value: 0.7999999999999999
|
364 |
+
name: Maxsim Accuracy@5
|
365 |
+
- type: MaxSim_accuracy@10
|
366 |
+
value: 0.8599999999999999
|
367 |
+
name: Maxsim Accuracy@10
|
368 |
+
- type: MaxSim_precision@1
|
369 |
+
value: 0.6033333333333334
|
370 |
+
name: Maxsim Precision@1
|
371 |
+
- type: MaxSim_precision@3
|
372 |
+
value: 0.3688888888888889
|
373 |
+
name: Maxsim Precision@3
|
374 |
+
- type: MaxSim_precision@5
|
375 |
+
value: 0.27999999999999997
|
376 |
+
name: Maxsim Precision@5
|
377 |
+
- type: MaxSim_precision@10
|
378 |
+
value: 0.19533333333333333
|
379 |
+
name: Maxsim Precision@10
|
380 |
+
- type: MaxSim_recall@1
|
381 |
+
value: 0.3145055337265958
|
382 |
+
name: Maxsim Recall@1
|
383 |
+
- type: MaxSim_recall@3
|
384 |
+
value: 0.4799585203273504
|
385 |
+
name: Maxsim Recall@3
|
386 |
+
- type: MaxSim_recall@5
|
387 |
+
value: 0.5454702828453192
|
388 |
+
name: Maxsim Recall@5
|
389 |
+
- type: MaxSim_recall@10
|
390 |
+
value: 0.6202885931719342
|
391 |
+
name: Maxsim Recall@10
|
392 |
+
- type: MaxSim_ndcg@10
|
393 |
+
value: 0.6030010883926978
|
394 |
+
name: Maxsim Ndcg@10
|
395 |
+
- type: MaxSim_mrr@10
|
396 |
+
value: 0.6902632275132276
|
397 |
+
name: Maxsim Mrr@10
|
398 |
+
- type: MaxSim_map@100
|
399 |
+
value: 0.5299605840137683
|
400 |
+
name: Maxsim Map@100
|
401 |
+
---
|
402 |
+
|
403 |
+
# PyLate model based on artiwise-ai/modernbert-base-tr-uncased
|
404 |
+
|
405 |
+
This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [artiwise-ai/modernbert-base-tr-uncased](https://huggingface.co/artiwise-ai/modernbert-base-tr-uncased) on the [train](https://huggingface.co/datasets/Speedsy/msmarco-cleaned-gemini-bge-tr-uncased) dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
|
406 |
+
|
407 |
+
## Model Details
|
408 |
+
|
409 |
+
### Model Description
|
410 |
+
- **Model Type:** PyLate model
|
411 |
+
- **Base model:** [artiwise-ai/modernbert-base-tr-uncased](https://huggingface.co/artiwise-ai/modernbert-base-tr-uncased) <!-- at revision fe2ec5fcfd7afd1e0378d295dfd7fadfb55ea965 -->
|
412 |
+
- **Document Length:** 180 tokens
|
413 |
+
- **Query Length:** 32 tokens
|
414 |
+
- **Output Dimensionality:** 128 tokens
|
415 |
+
- **Similarity Function:** MaxSim
|
416 |
+
- **Training Dataset:**
|
417 |
+
- [train](https://huggingface.co/datasets/Speedsy/msmarco-cleaned-gemini-bge-tr-uncased)
|
418 |
+
- **Language:** en
|
419 |
+
<!-- - **License:** Unknown -->
|
420 |
+
|
421 |
+
### Model Sources
|
422 |
+
|
423 |
+
- **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/)
|
424 |
+
- **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate)
|
425 |
+
- **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate)
|
426 |
+
|
427 |
+
### Full Model Architecture
|
428 |
+
|
429 |
+
```
|
430 |
+
ColBERT(
|
431 |
+
(0): Transformer({'max_seq_length': 179, 'do_lower_case': False}) with Transformer model: ModernBertModel
|
432 |
+
(1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
|
433 |
+
)
|
434 |
+
```
|
435 |
+
|
436 |
+
## Usage
|
437 |
+
First install the PyLate library:
|
438 |
+
|
439 |
+
```bash
|
440 |
+
pip install -U pylate
|
441 |
+
```
|
442 |
+
|
443 |
+
### Retrieval
|
444 |
+
|
445 |
+
PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.
|
446 |
+
|
447 |
+
#### Indexing documents
|
448 |
+
|
449 |
+
First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:
|
450 |
+
|
451 |
+
```python
|
452 |
+
from pylate import indexes, models, retrieve
|
453 |
+
|
454 |
+
# Step 1: Load the ColBERT model
|
455 |
+
model = models.ColBERT(
|
456 |
+
model_name_or_path=pylate_model_id,
|
457 |
+
)
|
458 |
+
|
459 |
+
# Step 2: Initialize the Voyager index
|
460 |
+
index = indexes.Voyager(
|
461 |
+
index_folder="pylate-index",
|
462 |
+
index_name="index",
|
463 |
+
override=True, # This overwrites the existing index if any
|
464 |
+
)
|
465 |
+
|
466 |
+
# Step 3: Encode the documents
|
467 |
+
documents_ids = ["1", "2", "3"]
|
468 |
+
documents = ["document 1 text", "document 2 text", "document 3 text"]
|
469 |
+
|
470 |
+
documents_embeddings = model.encode(
|
471 |
+
documents,
|
472 |
+
batch_size=32,
|
473 |
+
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
|
474 |
+
show_progress_bar=True,
|
475 |
+
)
|
476 |
+
|
477 |
+
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
|
478 |
+
index.add_documents(
|
479 |
+
documents_ids=documents_ids,
|
480 |
+
documents_embeddings=documents_embeddings,
|
481 |
+
)
|
482 |
+
```
|
483 |
+
|
484 |
+
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
|
485 |
+
|
486 |
+
```python
|
487 |
+
# To load an index, simply instantiate it with the correct folder/name and without overriding it
|
488 |
+
index = indexes.Voyager(
|
489 |
+
index_folder="pylate-index",
|
490 |
+
index_name="index",
|
491 |
+
)
|
492 |
+
```
|
493 |
+
|
494 |
+
#### Retrieving top-k documents for queries
|
495 |
+
|
496 |
+
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries.
|
497 |
+
To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
|
498 |
+
|
499 |
+
```python
|
500 |
+
# Step 1: Initialize the ColBERT retriever
|
501 |
+
retriever = retrieve.ColBERT(index=index)
|
502 |
+
|
503 |
+
# Step 2: Encode the queries
|
504 |
+
queries_embeddings = model.encode(
|
505 |
+
["query for document 3", "query for document 1"],
|
506 |
+
batch_size=32,
|
507 |
+
is_query=True, # # Ensure that it is set to False to indicate that these are queries
|
508 |
+
show_progress_bar=True,
|
509 |
+
)
|
510 |
+
|
511 |
+
# Step 3: Retrieve top-k documents
|
512 |
+
scores = retriever.retrieve(
|
513 |
+
queries_embeddings=queries_embeddings,
|
514 |
+
k=10, # Retrieve the top 10 matches for each query
|
515 |
+
)
|
516 |
+
```
|
517 |
+
|
518 |
+
### Reranking
|
519 |
+
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
|
520 |
+
|
521 |
+
```python
|
522 |
+
from pylate import rank, models
|
523 |
+
|
524 |
+
queries = [
|
525 |
+
"query A",
|
526 |
+
"query B",
|
527 |
+
]
|
528 |
+
|
529 |
+
documents = [
|
530 |
+
["document A", "document B"],
|
531 |
+
["document 1", "document C", "document B"],
|
532 |
+
]
|
533 |
+
|
534 |
+
documents_ids = [
|
535 |
+
[1, 2],
|
536 |
+
[1, 3, 2],
|
537 |
+
]
|
538 |
+
|
539 |
+
model = models.ColBERT(
|
540 |
+
model_name_or_path=pylate_model_id,
|
541 |
+
)
|
542 |
+
|
543 |
+
queries_embeddings = model.encode(
|
544 |
+
queries,
|
545 |
+
is_query=True,
|
546 |
+
)
|
547 |
+
|
548 |
+
documents_embeddings = model.encode(
|
549 |
+
documents,
|
550 |
+
is_query=False,
|
551 |
+
)
|
552 |
+
|
553 |
+
reranked_documents = rank.rerank(
|
554 |
+
documents_ids=documents_ids,
|
555 |
+
queries_embeddings=queries_embeddings,
|
556 |
+
documents_embeddings=documents_embeddings,
|
557 |
+
)
|
558 |
+
```
|
559 |
+
|
560 |
+
<!--
|
561 |
+
### Direct Usage (Transformers)
|
562 |
+
|
563 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
564 |
+
|
565 |
+
</details>
|
566 |
+
-->
|
567 |
+
|
568 |
+
<!--
|
569 |
+
### Downstream Usage (Sentence Transformers)
|
570 |
+
|
571 |
+
You can finetune this model on your own dataset.
|
572 |
+
|
573 |
+
<details><summary>Click to expand</summary>
|
574 |
+
|
575 |
+
</details>
|
576 |
+
-->
|
577 |
+
|
578 |
+
<!--
|
579 |
+
### Out-of-Scope Use
|
580 |
+
|
581 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
582 |
+
-->
|
583 |
+
|
584 |
+
## Evaluation
|
585 |
+
|
586 |
+
### Metrics
|
587 |
+
|
588 |
+
#### Py Late Information Retrieval
|
589 |
+
* Dataset: `['NanoDBPedia', 'NanoFiQA2018', 'NanoHotpotQA', 'NanoMSMARCO', 'NanoNQ', 'NanoSCIDOCS']`
|
590 |
+
* Evaluated with <code>pylate.evaluation.pylate_information_retrieval_evaluator.PyLateInformationRetrievalEvaluator</code>
|
591 |
+
|
592 |
+
| Metric | NanoDBPedia | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNQ | NanoSCIDOCS |
|
593 |
+
|:--------------------|:------------|:-------------|:-------------|:------------|:-----------|:------------|
|
594 |
+
| MaxSim_accuracy@1 | 0.8 | 0.46 | 0.9 | 0.46 | 0.58 | 0.42 |
|
595 |
+
| MaxSim_accuracy@3 | 0.92 | 0.68 | 1.0 | 0.62 | 0.68 | 0.6 |
|
596 |
+
| MaxSim_accuracy@5 | 0.96 | 0.72 | 1.0 | 0.7 | 0.78 | 0.64 |
|
597 |
+
| MaxSim_accuracy@10 | 1.0 | 0.72 | 1.0 | 0.82 | 0.82 | 0.8 |
|
598 |
+
| MaxSim_precision@1 | 0.8 | 0.46 | 0.9 | 0.46 | 0.58 | 0.42 |
|
599 |
+
| MaxSim_precision@3 | 0.6733 | 0.3 | 0.5133 | 0.2067 | 0.2333 | 0.2867 |
|
600 |
+
| MaxSim_precision@5 | 0.6 | 0.224 | 0.328 | 0.14 | 0.164 | 0.224 |
|
601 |
+
| MaxSim_precision@10 | 0.548 | 0.128 | 0.168 | 0.082 | 0.088 | 0.158 |
|
602 |
+
| MaxSim_recall@1 | 0.0858 | 0.2326 | 0.45 | 0.46 | 0.57 | 0.0887 |
|
603 |
+
| MaxSim_recall@3 | 0.183 | 0.4591 | 0.77 | 0.62 | 0.67 | 0.1777 |
|
604 |
+
| MaxSim_recall@5 | 0.2593 | 0.5128 | 0.82 | 0.7 | 0.75 | 0.2307 |
|
605 |
+
| MaxSim_recall@10 | 0.3914 | 0.5457 | 0.84 | 0.82 | 0.8 | 0.3247 |
|
606 |
+
| **MaxSim_ndcg@10** | **0.6726** | **0.4799** | **0.8249** | **0.6299** | **0.6865** | **0.3242** |
|
607 |
+
| MaxSim_mrr@10 | 0.8711 | 0.5623 | 0.9467 | 0.5707 | 0.654 | 0.5368 |
|
608 |
+
| MaxSim_map@100 | 0.5248 | 0.4144 | 0.7682 | 0.5764 | 0.6519 | 0.2441 |
|
609 |
+
|
610 |
+
#### Pylate Custom Nano BEIR
|
611 |
+
* Dataset: `NanoBEIR_mean`
|
612 |
+
* Evaluated with <code>pylate_nano_beir_evaluator.PylateCustomNanoBEIREvaluator</code>
|
613 |
+
|
614 |
+
| Metric | Value |
|
615 |
+
|:--------------------|:----------|
|
616 |
+
| MaxSim_accuracy@1 | 0.6033 |
|
617 |
+
| MaxSim_accuracy@3 | 0.75 |
|
618 |
+
| MaxSim_accuracy@5 | 0.8 |
|
619 |
+
| MaxSim_accuracy@10 | 0.86 |
|
620 |
+
| MaxSim_precision@1 | 0.6033 |
|
621 |
+
| MaxSim_precision@3 | 0.3689 |
|
622 |
+
| MaxSim_precision@5 | 0.28 |
|
623 |
+
| MaxSim_precision@10 | 0.1953 |
|
624 |
+
| MaxSim_recall@1 | 0.3145 |
|
625 |
+
| MaxSim_recall@3 | 0.48 |
|
626 |
+
| MaxSim_recall@5 | 0.5455 |
|
627 |
+
| MaxSim_recall@10 | 0.6203 |
|
628 |
+
| **MaxSim_ndcg@10** | **0.603** |
|
629 |
+
| MaxSim_mrr@10 | 0.6903 |
|
630 |
+
| MaxSim_map@100 | 0.53 |
|
631 |
+
|
632 |
+
<!--
|
633 |
+
## Bias, Risks and Limitations
|
634 |
+
|
635 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
636 |
+
-->
|
637 |
+
|
638 |
+
<!--
|
639 |
+
### Recommendations
|
640 |
+
|
641 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
642 |
+
-->
|
643 |
+
|
644 |
+
## Training Details
|
645 |
+
|
646 |
+
### Training Dataset
|
647 |
+
|
648 |
+
#### train
|
649 |
+
|
650 |
+
* Dataset: [train](https://huggingface.co/datasets/Speedsy/msmarco-cleaned-gemini-bge-tr-uncased) at [bd034f5](https://huggingface.co/datasets/Speedsy/msmarco-cleaned-gemini-bge-tr-uncased/tree/bd034f56291b3b7a7dcde55ab0bd933977cc233e)
|
651 |
+
* Size: 443,147 training samples
|
652 |
+
* Columns: <code>query_id</code>, <code>document_ids</code>, and <code>scores</code>
|
653 |
+
* Approximate statistics based on the first 1000 samples:
|
654 |
+
| | query_id | document_ids | scores |
|
655 |
+
|:--------|:--------------------------------------------------------------------------------|:------------------------------------|:------------------------------------|
|
656 |
+
| type | string | list | list |
|
657 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 6.21 tokens</li><li>max: 8 tokens</li></ul> | <ul><li>size: 32 elements</li></ul> | <ul><li>size: 32 elements</li></ul> |
|
658 |
+
* Samples:
|
659 |
+
| query_id | document_ids | scores |
|
660 |
+
|:---------------------|:--------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------|
|
661 |
+
| <code>817836</code> | <code>['2716076', '6741935', '2681109', '5562684', '3507339', ...]</code> | <code>[1.0, 0.7059561610221863, 0.21702419221401215, 0.38270196318626404, 0.20812414586544037, ...]</code> |
|
662 |
+
| <code>1045170</code> | <code>['5088671', '2953295', '8783471', '4268439', '6339935', ...]</code> | <code>[1.0, 0.6493034362792969, 0.0692221149802208, 0.17963139712810516, 0.6697239875793457, ...]</code> |
|
663 |
+
| <code>1069432</code> | <code>['3724008', '314949', '8657336', '7420456', '879004', ...]</code> | <code>[1.0, 0.3706032931804657, 0.3508036434650421, 0.2823200523853302, 0.17563475668430328, ...]</code> |
|
664 |
+
* Loss: <code>pylate.losses.distillation.Distillation</code>
|
665 |
+
|
666 |
+
### Training Hyperparameters
|
667 |
+
#### Non-Default Hyperparameters
|
668 |
+
|
669 |
+
- `eval_strategy`: steps
|
670 |
+
- `gradient_accumulation_steps`: 2
|
671 |
+
- `learning_rate`: 3e-05
|
672 |
+
- `num_train_epochs`: 1
|
673 |
+
- `bf16`: True
|
674 |
+
|
675 |
+
#### All Hyperparameters
|
676 |
+
<details><summary>Click to expand</summary>
|
677 |
+
|
678 |
+
- `overwrite_output_dir`: False
|
679 |
+
- `do_predict`: False
|
680 |
+
- `eval_strategy`: steps
|
681 |
+
- `prediction_loss_only`: True
|
682 |
+
- `per_device_train_batch_size`: 8
|
683 |
+
- `per_device_eval_batch_size`: 8
|
684 |
+
- `per_gpu_train_batch_size`: None
|
685 |
+
- `per_gpu_eval_batch_size`: None
|
686 |
+
- `gradient_accumulation_steps`: 2
|
687 |
+
- `eval_accumulation_steps`: None
|
688 |
+
- `torch_empty_cache_steps`: None
|
689 |
+
- `learning_rate`: 3e-05
|
690 |
+
- `weight_decay`: 0.0
|
691 |
+
- `adam_beta1`: 0.9
|
692 |
+
- `adam_beta2`: 0.999
|
693 |
+
- `adam_epsilon`: 1e-08
|
694 |
+
- `max_grad_norm`: 1.0
|
695 |
+
- `num_train_epochs`: 1
|
696 |
+
- `max_steps`: -1
|
697 |
+
- `lr_scheduler_type`: linear
|
698 |
+
- `lr_scheduler_kwargs`: {}
|
699 |
+
- `warmup_ratio`: 0.0
|
700 |
+
- `warmup_steps`: 0
|
701 |
+
- `log_level`: passive
|
702 |
+
- `log_level_replica`: warning
|
703 |
+
- `log_on_each_node`: True
|
704 |
+
- `logging_nan_inf_filter`: True
|
705 |
+
- `save_safetensors`: True
|
706 |
+
- `save_on_each_node`: False
|
707 |
+
- `save_only_model`: False
|
708 |
+
- `restore_callback_states_from_checkpoint`: False
|
709 |
+
- `no_cuda`: False
|
710 |
+
- `use_cpu`: False
|
711 |
+
- `use_mps_device`: False
|
712 |
+
- `seed`: 42
|
713 |
+
- `data_seed`: None
|
714 |
+
- `jit_mode_eval`: False
|
715 |
+
- `use_ipex`: False
|
716 |
+
- `bf16`: True
|
717 |
+
- `fp16`: False
|
718 |
+
- `fp16_opt_level`: O1
|
719 |
+
- `half_precision_backend`: auto
|
720 |
+
- `bf16_full_eval`: False
|
721 |
+
- `fp16_full_eval`: False
|
722 |
+
- `tf32`: None
|
723 |
+
- `local_rank`: 0
|
724 |
+
- `ddp_backend`: None
|
725 |
+
- `tpu_num_cores`: None
|
726 |
+
- `tpu_metrics_debug`: False
|
727 |
+
- `debug`: []
|
728 |
+
- `dataloader_drop_last`: False
|
729 |
+
- `dataloader_num_workers`: 0
|
730 |
+
- `dataloader_prefetch_factor`: None
|
731 |
+
- `past_index`: -1
|
732 |
+
- `disable_tqdm`: False
|
733 |
+
- `remove_unused_columns`: True
|
734 |
+
- `label_names`: None
|
735 |
+
- `load_best_model_at_end`: False
|
736 |
+
- `ignore_data_skip`: False
|
737 |
+
- `fsdp`: []
|
738 |
+
- `fsdp_min_num_params`: 0
|
739 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
740 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
741 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
742 |
+
- `deepspeed`: None
|
743 |
+
- `label_smoothing_factor`: 0.0
|
744 |
+
- `optim`: adamw_torch
|
745 |
+
- `optim_args`: None
|
746 |
+
- `adafactor`: False
|
747 |
+
- `group_by_length`: False
|
748 |
+
- `length_column_name`: length
|
749 |
+
- `ddp_find_unused_parameters`: None
|
750 |
+
- `ddp_bucket_cap_mb`: None
|
751 |
+
- `ddp_broadcast_buffers`: False
|
752 |
+
- `dataloader_pin_memory`: True
|
753 |
+
- `dataloader_persistent_workers`: False
|
754 |
+
- `skip_memory_metrics`: True
|
755 |
+
- `use_legacy_prediction_loop`: False
|
756 |
+
- `push_to_hub`: False
|
757 |
+
- `resume_from_checkpoint`: None
|
758 |
+
- `hub_model_id`: None
|
759 |
+
- `hub_strategy`: every_save
|
760 |
+
- `hub_private_repo`: None
|
761 |
+
- `hub_always_push`: False
|
762 |
+
- `gradient_checkpointing`: False
|
763 |
+
- `gradient_checkpointing_kwargs`: None
|
764 |
+
- `include_inputs_for_metrics`: False
|
765 |
+
- `include_for_metrics`: []
|
766 |
+
- `eval_do_concat_batches`: True
|
767 |
+
- `fp16_backend`: auto
|
768 |
+
- `push_to_hub_model_id`: None
|
769 |
+
- `push_to_hub_organization`: None
|
770 |
+
- `mp_parameters`:
|
771 |
+
- `auto_find_batch_size`: False
|
772 |
+
- `full_determinism`: False
|
773 |
+
- `torchdynamo`: None
|
774 |
+
- `ray_scope`: last
|
775 |
+
- `ddp_timeout`: 1800
|
776 |
+
- `torch_compile`: False
|
777 |
+
- `torch_compile_backend`: None
|
778 |
+
- `torch_compile_mode`: None
|
779 |
+
- `dispatch_batches`: None
|
780 |
+
- `split_batches`: None
|
781 |
+
- `include_tokens_per_second`: False
|
782 |
+
- `include_num_input_tokens_seen`: False
|
783 |
+
- `neftune_noise_alpha`: None
|
784 |
+
- `optim_target_modules`: None
|
785 |
+
- `batch_eval_metrics`: False
|
786 |
+
- `eval_on_start`: False
|
787 |
+
- `use_liger_kernel`: False
|
788 |
+
- `eval_use_gather_object`: False
|
789 |
+
- `average_tokens_across_devices`: False
|
790 |
+
- `prompts`: None
|
791 |
+
- `batch_sampler`: batch_sampler
|
792 |
+
- `multi_dataset_batch_sampler`: proportional
|
793 |
+
|
794 |
+
</details>
|
795 |
+
|
796 |
+
### Training Logs
|
797 |
+
<details><summary>Click to expand</summary>
|
798 |
+
|
799 |
+
| Epoch | Step | Training Loss | NanoDBPedia_MaxSim_ndcg@10 | NanoFiQA2018_MaxSim_ndcg@10 | NanoHotpotQA_MaxSim_ndcg@10 | NanoMSMARCO_MaxSim_ndcg@10 | NanoNQ_MaxSim_ndcg@10 | NanoSCIDOCS_MaxSim_ndcg@10 | NanoBEIR_mean_MaxSim_ndcg@10 |
|
800 |
+
|:------:|:-----:|:-------------:|:--------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------:|:--------------------------:|:----------------------------:|
|
801 |
+
| 0.0036 | 100 | 0.0649 | - | - | - | - | - | - | - |
|
802 |
+
| 0.0072 | 200 | 0.0559 | - | - | - | - | - | - | - |
|
803 |
+
| 0.0108 | 300 | 0.0518 | - | - | - | - | - | - | - |
|
804 |
+
| 0.0144 | 400 | 0.051 | - | - | - | - | - | - | - |
|
805 |
+
| 0.0181 | 500 | 0.0492 | 0.6421 | 0.3808 | 0.7993 | 0.5565 | 0.5826 | 0.3050 | 0.5444 |
|
806 |
+
| 0.0217 | 600 | 0.0467 | - | - | - | - | - | - | - |
|
807 |
+
| 0.0253 | 700 | 0.0451 | - | - | - | - | - | - | - |
|
808 |
+
| 0.0289 | 800 | 0.0443 | - | - | - | - | - | - | - |
|
809 |
+
| 0.0325 | 900 | 0.0443 | - | - | - | - | - | - | - |
|
810 |
+
| 0.0361 | 1000 | 0.0437 | 0.6449 | 0.4015 | 0.8003 | 0.5437 | 0.6092 | 0.3134 | 0.5522 |
|
811 |
+
| 0.0397 | 1100 | 0.0433 | - | - | - | - | - | - | - |
|
812 |
+
| 0.0433 | 1200 | 0.0427 | - | - | - | - | - | - | - |
|
813 |
+
| 0.0469 | 1300 | 0.0414 | - | - | - | - | - | - | - |
|
814 |
+
| 0.0505 | 1400 | 0.0417 | - | - | - | - | - | - | - |
|
815 |
+
| 0.0542 | 1500 | 0.0418 | 0.6412 | 0.4285 | 0.8154 | 0.5866 | 0.6181 | 0.3219 | 0.5686 |
|
816 |
+
| 0.0578 | 1600 | 0.0404 | - | - | - | - | - | - | - |
|
817 |
+
| 0.0614 | 1700 | 0.0417 | - | - | - | - | - | - | - |
|
818 |
+
| 0.0650 | 1800 | 0.0407 | - | - | - | - | - | - | - |
|
819 |
+
| 0.0686 | 1900 | 0.0398 | - | - | - | - | - | - | - |
|
820 |
+
| 0.0722 | 2000 | 0.0401 | 0.6499 | 0.4354 | 0.8150 | 0.5610 | 0.6445 | 0.3152 | 0.5702 |
|
821 |
+
| 0.0758 | 2100 | 0.0404 | - | - | - | - | - | - | - |
|
822 |
+
| 0.0794 | 2200 | 0.0395 | - | - | - | - | - | - | - |
|
823 |
+
| 0.0830 | 2300 | 0.0404 | - | - | - | - | - | - | - |
|
824 |
+
| 0.0867 | 2400 | 0.0393 | - | - | - | - | - | - | - |
|
825 |
+
| 0.0903 | 2500 | 0.0387 | 0.6571 | 0.4435 | 0.8112 | 0.5786 | 0.6809 | 0.3232 | 0.5824 |
|
826 |
+
| 0.0939 | 2600 | 0.0397 | - | - | - | - | - | - | - |
|
827 |
+
| 0.0975 | 2700 | 0.0393 | - | - | - | - | - | - | - |
|
828 |
+
| 0.1011 | 2800 | 0.0384 | - | - | - | - | - | - | - |
|
829 |
+
| 0.1047 | 2900 | 0.0382 | - | - | - | - | - | - | - |
|
830 |
+
| 0.1083 | 3000 | 0.0381 | 0.6437 | 0.4751 | 0.8175 | 0.5711 | 0.6422 | 0.3203 | 0.5783 |
|
831 |
+
| 0.1119 | 3100 | 0.0382 | - | - | - | - | - | - | - |
|
832 |
+
| 0.1155 | 3200 | 0.0381 | - | - | - | - | - | - | - |
|
833 |
+
| 0.1191 | 3300 | 0.0385 | - | - | - | - | - | - | - |
|
834 |
+
| 0.1228 | 3400 | 0.0374 | - | - | - | - | - | - | - |
|
835 |
+
| 0.1264 | 3500 | 0.0382 | 0.6437 | 0.4833 | 0.8282 | 0.5955 | 0.6436 | 0.3190 | 0.5856 |
|
836 |
+
| 0.1300 | 3600 | 0.0365 | - | - | - | - | - | - | - |
|
837 |
+
| 0.1336 | 3700 | 0.0379 | - | - | - | - | - | - | - |
|
838 |
+
| 0.1372 | 3800 | 0.0376 | - | - | - | - | - | - | - |
|
839 |
+
| 0.1408 | 3900 | 0.0376 | - | - | - | - | - | - | - |
|
840 |
+
| 0.1444 | 4000 | 0.0378 | 0.6511 | 0.4760 | 0.8151 | 0.5806 | 0.6874 | 0.3140 | 0.5874 |
|
841 |
+
| 0.1480 | 4100 | 0.0365 | - | - | - | - | - | - | - |
|
842 |
+
| 0.1516 | 4200 | 0.0362 | - | - | - | - | - | - | - |
|
843 |
+
| 0.1553 | 4300 | 0.0374 | - | - | - | - | - | - | - |
|
844 |
+
| 0.1589 | 4400 | 0.0359 | - | - | - | - | - | - | - |
|
845 |
+
| 0.1625 | 4500 | 0.0368 | 0.6530 | 0.4458 | 0.8122 | 0.6101 | 0.6896 | 0.3174 | 0.5880 |
|
846 |
+
| 0.1661 | 4600 | 0.0356 | - | - | - | - | - | - | - |
|
847 |
+
| 0.1697 | 4700 | 0.0364 | - | - | - | - | - | - | - |
|
848 |
+
| 0.1733 | 4800 | 0.0352 | - | - | - | - | - | - | - |
|
849 |
+
| 0.1769 | 4900 | 0.0357 | - | - | - | - | - | - | - |
|
850 |
+
| 0.1805 | 5000 | 0.0366 | 0.6611 | 0.4680 | 0.8152 | 0.6260 | 0.6715 | 0.3252 | 0.5945 |
|
851 |
+
| 0.1841 | 5100 | 0.0358 | - | - | - | - | - | - | - |
|
852 |
+
| 0.1877 | 5200 | 0.0366 | - | - | - | - | - | - | - |
|
853 |
+
| 0.1914 | 5300 | 0.0348 | - | - | - | - | - | - | - |
|
854 |
+
| 0.1950 | 5400 | 0.036 | - | - | - | - | - | - | - |
|
855 |
+
| 0.1986 | 5500 | 0.0337 | 0.6595 | 0.4823 | 0.8162 | 0.6241 | 0.6620 | 0.3216 | 0.5943 |
|
856 |
+
| 0.2022 | 5600 | 0.0347 | - | - | - | - | - | - | - |
|
857 |
+
| 0.2058 | 5700 | 0.0361 | - | - | - | - | - | - | - |
|
858 |
+
| 0.2094 | 5800 | 0.0356 | - | - | - | - | - | - | - |
|
859 |
+
| 0.2130 | 5900 | 0.0359 | - | - | - | - | - | - | - |
|
860 |
+
| 0.2166 | 6000 | 0.0359 | 0.6560 | 0.4820 | 0.8121 | 0.6457 | 0.6587 | 0.3181 | 0.5954 |
|
861 |
+
| 0.2202 | 6100 | 0.0347 | - | - | - | - | - | - | - |
|
862 |
+
| 0.2239 | 6200 | 0.0355 | - | - | - | - | - | - | - |
|
863 |
+
| 0.2275 | 6300 | 0.0356 | - | - | - | - | - | - | - |
|
864 |
+
| 0.2311 | 6400 | 0.0351 | - | - | - | - | - | - | - |
|
865 |
+
| 0.2347 | 6500 | 0.0351 | 0.6650 | 0.4658 | 0.8291 | 0.6167 | 0.6742 | 0.3146 | 0.5942 |
|
866 |
+
| 0.2383 | 6600 | 0.0361 | - | - | - | - | - | - | - |
|
867 |
+
| 0.2419 | 6700 | 0.0352 | - | - | - | - | - | - | - |
|
868 |
+
| 0.2455 | 6800 | 0.0358 | - | - | - | - | - | - | - |
|
869 |
+
| 0.2491 | 6900 | 0.0339 | - | - | - | - | - | - | - |
|
870 |
+
| 0.2527 | 7000 | 0.0345 | 0.6600 | 0.4700 | 0.8413 | 0.6449 | 0.6862 | 0.3163 | 0.6031 |
|
871 |
+
| 0.2563 | 7100 | 0.0347 | - | - | - | - | - | - | - |
|
872 |
+
| 0.2600 | 7200 | 0.0346 | - | - | - | - | - | - | - |
|
873 |
+
| 0.2636 | 7300 | 0.0342 | - | - | - | - | - | - | - |
|
874 |
+
| 0.2672 | 7400 | 0.0346 | - | - | - | - | - | - | - |
|
875 |
+
| 0.2708 | 7500 | 0.0339 | 0.6583 | 0.4792 | 0.8295 | 0.6257 | 0.6788 | 0.3204 | 0.5986 |
|
876 |
+
| 0.2744 | 7600 | 0.0344 | - | - | - | - | - | - | - |
|
877 |
+
| 0.2780 | 7700 | 0.0323 | - | - | - | - | - | - | - |
|
878 |
+
| 0.2816 | 7800 | 0.0333 | - | - | - | - | - | - | - |
|
879 |
+
| 0.2852 | 7900 | 0.0334 | - | - | - | - | - | - | - |
|
880 |
+
| 0.2888 | 8000 | 0.0333 | 0.6633 | 0.4660 | 0.8257 | 0.6251 | 0.6847 | 0.3229 | 0.5979 |
|
881 |
+
| 0.2925 | 8100 | 0.0337 | - | - | - | - | - | - | - |
|
882 |
+
| 0.2961 | 8200 | 0.0339 | - | - | - | - | - | - | - |
|
883 |
+
| 0.2997 | 8300 | 0.0332 | - | - | - | - | - | - | - |
|
884 |
+
| 0.3033 | 8400 | 0.0334 | - | - | - | - | - | - | - |
|
885 |
+
| 0.3069 | 8500 | 0.0334 | 0.6744 | 0.4791 | 0.8204 | 0.6139 | 0.6654 | 0.3130 | 0.5944 |
|
886 |
+
| 0.3105 | 8600 | 0.032 | - | - | - | - | - | - | - |
|
887 |
+
| 0.3141 | 8700 | 0.0342 | - | - | - | - | - | - | - |
|
888 |
+
| 0.3177 | 8800 | 0.0337 | - | - | - | - | - | - | - |
|
889 |
+
| 0.3213 | 8900 | 0.0343 | - | - | - | - | - | - | - |
|
890 |
+
| 0.3249 | 9000 | 0.0342 | 0.6643 | 0.4395 | 0.8270 | 0.6252 | 0.6828 | 0.3146 | 0.5922 |
|
891 |
+
| 0.3286 | 9100 | 0.0332 | - | - | - | - | - | - | - |
|
892 |
+
| 0.3322 | 9200 | 0.0337 | - | - | - | - | - | - | - |
|
893 |
+
| 0.3358 | 9300 | 0.033 | - | - | - | - | - | - | - |
|
894 |
+
| 0.3394 | 9400 | 0.0327 | - | - | - | - | - | - | - |
|
895 |
+
| 0.3430 | 9500 | 0.0332 | 0.6676 | 0.4530 | 0.8400 | 0.6220 | 0.6753 | 0.3139 | 0.5953 |
|
896 |
+
| 0.3466 | 9600 | 0.0315 | - | - | - | - | - | - | - |
|
897 |
+
| 0.3502 | 9700 | 0.033 | - | - | - | - | - | - | - |
|
898 |
+
| 0.3538 | 9800 | 0.0331 | - | - | - | - | - | - | - |
|
899 |
+
| 0.3574 | 9900 | 0.0341 | - | - | - | - | - | - | - |
|
900 |
+
| 0.3610 | 10000 | 0.0327 | 0.6602 | 0.4887 | 0.8308 | 0.6267 | 0.6806 | 0.3241 | 0.6018 |
|
901 |
+
| 0.3647 | 10100 | 0.0338 | - | - | - | - | - | - | - |
|
902 |
+
| 0.3683 | 10200 | 0.0327 | - | - | - | - | - | - | - |
|
903 |
+
| 0.3719 | 10300 | 0.0325 | - | - | - | - | - | - | - |
|
904 |
+
| 0.3755 | 10400 | 0.0342 | - | - | - | - | - | - | - |
|
905 |
+
| 0.3791 | 10500 | 0.034 | 0.6659 | 0.4723 | 0.8313 | 0.6156 | 0.6803 | 0.3240 | 0.5982 |
|
906 |
+
| 0.3827 | 10600 | 0.0323 | - | - | - | - | - | - | - |
|
907 |
+
| 0.3863 | 10700 | 0.0329 | - | - | - | - | - | - | - |
|
908 |
+
| 0.3899 | 10800 | 0.0328 | - | - | - | - | - | - | - |
|
909 |
+
| 0.3935 | 10900 | 0.0324 | - | - | - | - | - | - | - |
|
910 |
+
| 0.3972 | 11000 | 0.0321 | 0.6628 | 0.4937 | 0.8340 | 0.6373 | 0.6945 | 0.3268 | 0.6082 |
|
911 |
+
| 0.4008 | 11100 | 0.0329 | - | - | - | - | - | - | - |
|
912 |
+
| 0.4044 | 11200 | 0.0329 | - | - | - | - | - | - | - |
|
913 |
+
| 0.4080 | 11300 | 0.0325 | - | - | - | - | - | - | - |
|
914 |
+
| 0.4116 | 11400 | 0.0321 | - | - | - | - | - | - | - |
|
915 |
+
| 0.4152 | 11500 | 0.0325 | 0.6617 | 0.4698 | 0.8419 | 0.6231 | 0.6853 | 0.3191 | 0.6002 |
|
916 |
+
| 0.4188 | 11600 | 0.0327 | - | - | - | - | - | - | - |
|
917 |
+
| 0.4224 | 11700 | 0.0327 | - | - | - | - | - | - | - |
|
918 |
+
| 0.4260 | 11800 | 0.0326 | - | - | - | - | - | - | - |
|
919 |
+
| 0.4296 | 11900 | 0.0329 | - | - | - | - | - | - | - |
|
920 |
+
| 0.4333 | 12000 | 0.0332 | 0.6559 | 0.4860 | 0.8324 | 0.6160 | 0.6966 | 0.3219 | 0.6015 |
|
921 |
+
| 0.4369 | 12100 | 0.0323 | - | - | - | - | - | - | - |
|
922 |
+
| 0.4405 | 12200 | 0.0327 | - | - | - | - | - | - | - |
|
923 |
+
| 0.4441 | 12300 | 0.0321 | - | - | - | - | - | - | - |
|
924 |
+
| 0.4477 | 12400 | 0.0321 | - | - | - | - | - | - | - |
|
925 |
+
| 0.4513 | 12500 | 0.0319 | 0.6630 | 0.4877 | 0.8310 | 0.6197 | 0.6943 | 0.3296 | 0.6042 |
|
926 |
+
| 0.4549 | 12600 | 0.0326 | - | - | - | - | - | - | - |
|
927 |
+
| 0.4585 | 12700 | 0.032 | - | - | - | - | - | - | - |
|
928 |
+
| 0.4621 | 12800 | 0.032 | - | - | - | - | - | - | - |
|
929 |
+
| 0.4658 | 12900 | 0.0302 | - | - | - | - | - | - | - |
|
930 |
+
| 0.4694 | 13000 | 0.0311 | 0.6687 | 0.4726 | 0.8305 | 0.6191 | 0.6929 | 0.3233 | 0.6012 |
|
931 |
+
| 0.4730 | 13100 | 0.0321 | - | - | - | - | - | - | - |
|
932 |
+
| 0.4766 | 13200 | 0.0318 | - | - | - | - | - | - | - |
|
933 |
+
| 0.4802 | 13300 | 0.032 | - | - | - | - | - | - | - |
|
934 |
+
| 0.4838 | 13400 | 0.0315 | - | - | - | - | - | - | - |
|
935 |
+
| 0.4874 | 13500 | 0.0317 | 0.6628 | 0.4781 | 0.8257 | 0.6153 | 0.6795 | 0.3172 | 0.5964 |
|
936 |
+
| 0.4910 | 13600 | 0.0316 | - | - | - | - | - | - | - |
|
937 |
+
| 0.4946 | 13700 | 0.0335 | - | - | - | - | - | - | - |
|
938 |
+
| 0.4982 | 13800 | 0.0313 | - | - | - | - | - | - | - |
|
939 |
+
| 0.5019 | 13900 | 0.0317 | - | - | - | - | - | - | - |
|
940 |
+
| 0.5055 | 14000 | 0.0321 | 0.6579 | 0.4676 | 0.8351 | 0.6088 | 0.6774 | 0.3211 | 0.5946 |
|
941 |
+
| 0.5091 | 14100 | 0.0318 | - | - | - | - | - | - | - |
|
942 |
+
| 0.5127 | 14200 | 0.0328 | - | - | - | - | - | - | - |
|
943 |
+
| 0.5163 | 14300 | 0.0307 | - | - | - | - | - | - | - |
|
944 |
+
| 0.5199 | 14400 | 0.0326 | - | - | - | - | - | - | - |
|
945 |
+
| 0.5235 | 14500 | 0.0322 | 0.6558 | 0.5042 | 0.8344 | 0.6093 | 0.6963 | 0.3244 | 0.6041 |
|
946 |
+
| 0.5271 | 14600 | 0.0321 | - | - | - | - | - | - | - |
|
947 |
+
| 0.5307 | 14700 | 0.0308 | - | - | - | - | - | - | - |
|
948 |
+
| 0.5344 | 14800 | 0.0315 | - | - | - | - | - | - | - |
|
949 |
+
| 0.5380 | 14900 | 0.0324 | - | - | - | - | - | - | - |
|
950 |
+
| 0.5416 | 15000 | 0.0305 | 0.6598 | 0.4898 | 0.8402 | 0.6081 | 0.6945 | 0.3207 | 0.6022 |
|
951 |
+
| 0.5452 | 15100 | 0.0324 | - | - | - | - | - | - | - |
|
952 |
+
| 0.5488 | 15200 | 0.0315 | - | - | - | - | - | - | - |
|
953 |
+
| 0.5524 | 15300 | 0.0311 | - | - | - | - | - | - | - |
|
954 |
+
| 0.5560 | 15400 | 0.0317 | - | - | - | - | - | - | - |
|
955 |
+
| 0.5596 | 15500 | 0.0309 | 0.6541 | 0.4770 | 0.8309 | 0.6234 | 0.6946 | 0.3282 | 0.6014 |
|
956 |
+
| 0.5632 | 15600 | 0.0322 | - | - | - | - | - | - | - |
|
957 |
+
| 0.5668 | 15700 | 0.0314 | - | - | - | - | - | - | - |
|
958 |
+
| 0.5705 | 15800 | 0.0312 | - | - | - | - | - | - | - |
|
959 |
+
| 0.5741 | 15900 | 0.0301 | - | - | - | - | - | - | - |
|
960 |
+
| 0.5777 | 16000 | 0.0316 | 0.6699 | 0.4869 | 0.8348 | 0.6061 | 0.7020 | 0.3182 | 0.6030 |
|
961 |
+
| 0.5813 | 16100 | 0.0309 | - | - | - | - | - | - | - |
|
962 |
+
| 0.5849 | 16200 | 0.0297 | - | - | - | - | - | - | - |
|
963 |
+
| 0.5885 | 16300 | 0.0319 | - | - | - | - | - | - | - |
|
964 |
+
| 0.5921 | 16400 | 0.0305 | - | - | - | - | - | - | - |
|
965 |
+
| 0.5957 | 16500 | 0.0309 | 0.6725 | 0.4863 | 0.8270 | 0.6131 | 0.6957 | 0.3254 | 0.6033 |
|
966 |
+
| 0.5993 | 16600 | 0.0312 | - | - | - | - | - | - | - |
|
967 |
+
| 0.6030 | 16700 | 0.0305 | - | - | - | - | - | - | - |
|
968 |
+
| 0.6066 | 16800 | 0.0306 | - | - | - | - | - | - | - |
|
969 |
+
| 0.6102 | 16900 | 0.0314 | - | - | - | - | - | - | - |
|
970 |
+
| 0.6138 | 17000 | 0.0308 | 0.6720 | 0.4886 | 0.8269 | 0.6115 | 0.6809 | 0.3239 | 0.6006 |
|
971 |
+
| 0.6174 | 17100 | 0.0307 | - | - | - | - | - | - | - |
|
972 |
+
| 0.6210 | 17200 | 0.03 | - | - | - | - | - | - | - |
|
973 |
+
| 0.6246 | 17300 | 0.0315 | - | - | - | - | - | - | - |
|
974 |
+
| 0.6282 | 17400 | 0.0304 | - | - | - | - | - | - | - |
|
975 |
+
| 0.6318 | 17500 | 0.0313 | 0.6646 | 0.4817 | 0.8216 | 0.6176 | 0.6967 | 0.3257 | 0.6013 |
|
976 |
+
| 0.6354 | 17600 | 0.03 | - | - | - | - | - | - | - |
|
977 |
+
| 0.6391 | 17700 | 0.0323 | - | - | - | - | - | - | - |
|
978 |
+
| 0.6427 | 17800 | 0.0311 | - | - | - | - | - | - | - |
|
979 |
+
| 0.6463 | 17900 | 0.0295 | - | - | - | - | - | - | - |
|
980 |
+
| 0.6499 | 18000 | 0.0307 | 0.6726 | 0.4799 | 0.8249 | 0.6299 | 0.6865 | 0.3242 | 0.6030 |
|
981 |
+
|
982 |
+
</details>
|
983 |
+
|
984 |
+
### Framework Versions
|
985 |
+
- Python: 3.11.12
|
986 |
+
- Sentence Transformers: 4.0.2
|
987 |
+
- PyLate: 1.2.0
|
988 |
+
- Transformers: 4.48.2
|
989 |
+
- PyTorch: 2.6.0+cu124
|
990 |
+
- Accelerate: 1.6.0
|
991 |
+
- Datasets: 3.6.0
|
992 |
+
- Tokenizers: 0.21.1
|
993 |
+
|
994 |
+
|
995 |
+
## Citation
|
996 |
+
|
997 |
+
### BibTeX
|
998 |
+
|
999 |
+
#### Sentence Transformers
|
1000 |
+
```bibtex
|
1001 |
+
@inproceedings{reimers-2019-sentence-bert,
|
1002 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
1003 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1004 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
1005 |
+
month = "11",
|
1006 |
+
year = "2019",
|
1007 |
+
publisher = "Association for Computational Linguistics",
|
1008 |
+
url = "https://arxiv.org/abs/1908.10084"
|
1009 |
+
}
|
1010 |
+
```
|
1011 |
+
|
1012 |
+
#### PyLate
|
1013 |
+
```bibtex
|
1014 |
+
@misc{PyLate,
|
1015 |
+
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
|
1016 |
+
author={Chaffin, Antoine and Sourty, Raphaël},
|
1017 |
+
url={https://github.com/lightonai/pylate},
|
1018 |
+
year={2024}
|
1019 |
+
}
|
1020 |
+
```
|
1021 |
+
|
1022 |
+
<!--
|
1023 |
+
## Glossary
|
1024 |
+
|
1025 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1026 |
+
-->
|
1027 |
+
|
1028 |
+
<!--
|
1029 |
+
## Model Card Authors
|
1030 |
+
|
1031 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1032 |
+
-->
|
1033 |
+
|
1034 |
+
<!--
|
1035 |
+
## Model Card Contact
|
1036 |
+
|
1037 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1038 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "artiwise-ai/modernbert-base-tr-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"ModernBertModel"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 50281,
|
9 |
+
"classifier_activation": "gelu",
|
10 |
+
"classifier_bias": false,
|
11 |
+
"classifier_dropout": 0.0,
|
12 |
+
"classifier_pooling": "mean",
|
13 |
+
"cls_token_id": 2,
|
14 |
+
"decoder_bias": true,
|
15 |
+
"deterministic_flash_attn": false,
|
16 |
+
"embedding_dropout": 0.0,
|
17 |
+
"eos_token_id": 50282,
|
18 |
+
"global_attn_every_n_layers": 3,
|
19 |
+
"global_rope_theta": 160000.0,
|
20 |
+
"gradient_checkpointing": false,
|
21 |
+
"hidden_activation": "gelu",
|
22 |
+
"hidden_size": 768,
|
23 |
+
"initializer_cutoff_factor": 2.0,
|
24 |
+
"initializer_range": 0.02,
|
25 |
+
"intermediate_size": 1152,
|
26 |
+
"layer_norm_eps": 1e-05,
|
27 |
+
"local_attention": 128,
|
28 |
+
"local_rope_theta": 10000.0,
|
29 |
+
"mask_token_id": 4,
|
30 |
+
"max_position_embeddings": 8192,
|
31 |
+
"mlp_bias": false,
|
32 |
+
"mlp_dropout": 0.0,
|
33 |
+
"model_type": "modernbert",
|
34 |
+
"norm_bias": false,
|
35 |
+
"norm_eps": 1e-05,
|
36 |
+
"num_attention_heads": 12,
|
37 |
+
"num_hidden_layers": 22,
|
38 |
+
"pad_token_id": 0,
|
39 |
+
"position_embedding_type": "absolute",
|
40 |
+
"reference_compile": false,
|
41 |
+
"repad_logits_with_grad": false,
|
42 |
+
"sep_token_id": 3,
|
43 |
+
"sparse_pred_ignore_index": -100,
|
44 |
+
"sparse_prediction": false,
|
45 |
+
"torch_dtype": "float32",
|
46 |
+
"transformers_version": "4.48.2",
|
47 |
+
"unk_token_id": 1,
|
48 |
+
"vocab_size": 32002
|
49 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "4.0.2",
|
4 |
+
"transformers": "4.48.2",
|
5 |
+
"pytorch": "2.6.0+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "MaxSim",
|
10 |
+
"query_prefix": "[Q] ",
|
11 |
+
"document_prefix": "[D] ",
|
12 |
+
"query_length": 32,
|
13 |
+
"document_length": 180,
|
14 |
+
"attend_to_expansion_tokens": false,
|
15 |
+
"skiplist_words": [
|
16 |
+
"!",
|
17 |
+
"\"",
|
18 |
+
"#",
|
19 |
+
"$",
|
20 |
+
"%",
|
21 |
+
"&",
|
22 |
+
"'",
|
23 |
+
"(",
|
24 |
+
")",
|
25 |
+
"*",
|
26 |
+
"+",
|
27 |
+
",",
|
28 |
+
"-",
|
29 |
+
".",
|
30 |
+
"/",
|
31 |
+
":",
|
32 |
+
";",
|
33 |
+
"<",
|
34 |
+
"=",
|
35 |
+
">",
|
36 |
+
"?",
|
37 |
+
"@",
|
38 |
+
"[",
|
39 |
+
"\\",
|
40 |
+
"]",
|
41 |
+
"^",
|
42 |
+
"_",
|
43 |
+
"`",
|
44 |
+
"{",
|
45 |
+
"|",
|
46 |
+
"}",
|
47 |
+
"~"
|
48 |
+
]
|
49 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7dc1f7b7cb7010b76004fac36b019156052f02e0dd600bc78b873b6ec8d9969
|
3 |
+
size 539649784
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Dense",
|
12 |
+
"type": "pylate.models.Dense.Dense"
|
13 |
+
}
|
14 |
+
]
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:137e5a201d7b153466a248470765ca2c8d312a5adb75df29beb74f940b15e9f7
|
3 |
+
size 1080173626
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a22625c60bf14250424f99a809ffcecb5f25c776dd8079c8624dc295555b32c0
|
3 |
+
size 14244
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4dbccfec3e9d0fcaffb7ef63b244843cfabf6d7464575c70c98183470b0cbfea
|
3 |
+
size 1064
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 179,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "[MASK]",
|
17 |
+
"sep_token": {
|
18 |
+
"content": "[SEP]",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"unk_token": {
|
25 |
+
"content": "[UNK]",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"32000": {
|
44 |
+
"content": "[Q] ",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": true,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": false
|
50 |
+
},
|
51 |
+
"32001": {
|
52 |
+
"content": "[D] ",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": true,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": false
|
58 |
+
}
|
59 |
+
},
|
60 |
+
"clean_up_tokenization_spaces": true,
|
61 |
+
"cls_token": "[CLS]",
|
62 |
+
"do_basic_tokenize": true,
|
63 |
+
"do_lower_case": true,
|
64 |
+
"extra_special_tokens": {},
|
65 |
+
"mask_token": "[MASK]",
|
66 |
+
"max_len": 8192,
|
67 |
+
"max_length": 8192,
|
68 |
+
"model_input_names": [
|
69 |
+
"input_ids",
|
70 |
+
"attention_mask"
|
71 |
+
],
|
72 |
+
"model_max_length": 8192,
|
73 |
+
"never_split": null,
|
74 |
+
"pad_to_multiple_of": null,
|
75 |
+
"pad_token": "[MASK]",
|
76 |
+
"pad_token_type_id": 0,
|
77 |
+
"padding_side": "right",
|
78 |
+
"sep_token": "[SEP]",
|
79 |
+
"stride": 0,
|
80 |
+
"strip_accents": false,
|
81 |
+
"tokenize_chinese_chars": true,
|
82 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
83 |
+
"truncation_side": "right",
|
84 |
+
"truncation_strategy": "longest_first",
|
85 |
+
"unk_token": "[UNK]"
|
86 |
+
}
|
trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b6220f30f8ddbaed1ea88a7267eca4c43d09963b744be564645dd64c2b46c26
|
3 |
+
size 5624
|