Srinivasmec26 commited on
Commit
deee1bb
·
verified ·
1 Parent(s): 8c21ceb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +127 -3
README.md CHANGED
@@ -6,17 +6,141 @@ tags:
6
  - unsloth
7
  - gemma3n
8
  - trl
9
- license: apache-2.0
10
  language:
11
  - en
12
  ---
13
 
14
- # Uploaded model
15
 
16
- - **Developed by:** Srinivasmec26
 
 
 
 
 
 
 
 
 
 
 
17
  - **License:** apache-2.0
18
  - **Finetuned from model :** unsloth/gemma-3n-e2b-it-unsloth-bnb-4bit
19
 
20
  This gemma3n model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  - unsloth
7
  - gemma3n
8
  - trl
 
9
  language:
10
  - en
11
  ---
12
 
13
+ # MindSlate: Fine-tuned Gemma-3B for Personal Knowledge Management
14
 
15
+
16
+ ## Model Description
17
+
18
+ **MindSlate** is a fine-tuned version of Google's Gemma-3B model, optimized for personal knowledge management tasks including flashcard generation, reminder processing, content summarization, and task management. The model was trained using Unsloth's efficient fine-tuning techniques for 2x faster training.
19
+
20
+ - **Architecture**: Gemma-3B with LoRA adapters
21
+ - **Model type**: Causal Language Model
22
+ - **Fine-tuning method**: 4-bit QLoRA
23
+ - **Languages**: English
24
+ - **License**: Apache 2.0
25
+
26
+ - **Developed by:** [Srinivas Nampalli](https://www.linkedin.com/in/srinivas-nampalli/)
27
  - **License:** apache-2.0
28
  - **Finetuned from model :** unsloth/gemma-3n-e2b-it-unsloth-bnb-4bit
29
 
30
  This gemma3n model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
31
 
32
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
33
+
34
+ ## Model Sources
35
+
36
+ - **Repository**: [https://github.com/Srinivasmec26/MindSlate](https://github.com/Srinivasmec26/MindSlate)
37
+ - **Base Model**: [unsloth/gemma-3b-E2B-it-unsloth-bnb-4bit](https://huggingface.co/unsloth/gemma-3b-E2B-it-unsloth-bnb-4bit)
38
+
39
+ ## Uses
40
+
41
+ ### Direct Use
42
+
43
+ MindSlate is designed for:
44
+ - Automatic flashcard generation from study materials
45
+ - Intelligent reminder creation
46
+ - Content summarization
47
+ - Task extraction and organization
48
+ - Personal knowledge base management
49
+
50
+ ### Downstream Use
51
+
52
+ Can be integrated into:
53
+ - Educational platforms
54
+ - Productivity apps
55
+ - Note-taking applications
56
+ - Personal AI assistants
57
+
58
+ ### Out-of-Scope Use
59
+
60
+ Not suitable for:
61
+ - Medical or legal advice
62
+ - High-stakes decision making
63
+ - Generating factual content without verification
64
+
65
+ ## How to Get Started
66
+
67
+ ```python
68
+ from unsloth import FastLanguageModel
69
+ import torch
70
+
71
+ model, tokenizer = FastLanguageModel.from_pretrained(
72
+ model_name = "Srinivasmec26/MindSlate",
73
+ max_seq_length = 2048,
74
+ dtype = torch.float16,
75
+ load_in_4bit = True,
76
+ )
77
+
78
+ messages = [
79
+ {"role": "user", "content": "Create flashcards for neural networks:"},
80
+ ]
81
+
82
+ inputs = tokenizer.apply_chat_template(
83
+ messages,
84
+ return_tensors = "pt",
85
+ ).to("cuda")
86
+
87
+ outputs = model.generate(**inputs, max_new_tokens=256)
88
+ print(tokenizer.decode(outputs[0]))
89
+ ```
90
+
91
+ ## Training Details
92
+
93
+ ### Training Data
94
+
95
+ - **Flashcards Dataset**: 400 items (cite your source)
96
+ - **Reminders Dataset**: 100 items (cite your source)
97
+ - **Summaries Dataset**: 100 items (cite your source)
98
+ - **Todos Dataset**: 100 items (cite your source)
99
+
100
+ *Replace with actual dataset citations and descriptions*
101
+
102
+ ### Training Procedure
103
+
104
+ - **Preprocessing**: Standardized into "### Input: / ### Output:" format
105
+ - **Fine-tuned with**: Unsloth 2025.8.1
106
+ - **Hardware**: Tesla T4 GPU (16GB VRAM)
107
+ - **Training Time**: ~51 minutes for 3 epochs
108
+ - **LoRA Configuration**:
109
+ - Rank: 64
110
+ - Alpha: 128
111
+ - Target Modules: All key projection layers
112
+
113
+ ## Evaluation
114
+
115
+ *Add evaluation metrics if available, for example:*
116
+
117
+ | Metric | Value |
118
+ |--------------|-------|
119
+ | Perplexity | X.XX |
120
+ | BLEU Score | X.XX |
121
+ | Training Loss| 0.128 |
122
+
123
+ ## Technical Specifications
124
+
125
+ - **Model Size**: 3B parameters
126
+ - **Quantization**: 4-bit (bnb)
127
+ - **Context Length**: 2048 tokens
128
+ - **Precision**: bfloat16/fp16 mixed
129
+
130
+ ## Citation
131
+
132
+ ```bibtex
133
+ @misc{mindslate2025,
134
+ author = {Srinivas Nampalli},
135
+ title = {MindSlate: Fine-tuned Gemma-3B for Personal Knowledge Management},
136
+ year = {2025},
137
+ publisher = {Hugging Face},
138
+ howpublished = {\url{https://huggingface.co/Srinivasmec26/MindSlate}}
139
+ }
140
+ ```
141
+
142
+ ## Model Card Contact
143
+
144
+ For questions about MindSlate, contact:
145
+ - Srinivas Nampalli
146
+ - [LinkedIn](https://www.linkedin.com/in/srinivas-nampalli/)