Update README.md
Browse files
README.md
CHANGED
@@ -19,6 +19,7 @@ library_name: adapter-transformers
|
|
19 |
|
20 |
# MindSlate: Fine-tuned Gemma-3B for Personal Knowledge Management
|
21 |
|
|
|
22 |
|
23 |
## Model Description
|
24 |
|
@@ -29,14 +30,8 @@ library_name: adapter-transformers
|
|
29 |
- **Fine-tuning method**: 4-bit QLoRA
|
30 |
- **Languages**: English
|
31 |
- **License**: Apache 2.0
|
32 |
-
|
33 |
-
- **
|
34 |
-
- **License:** apache-2.0
|
35 |
-
- **Finetuned from model :** unsloth/gemma-3n-e2b-it-unsloth-bnb-4bit
|
36 |
-
|
37 |
-
This gemma3n model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
38 |
-
|
39 |
-
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
40 |
|
41 |
## Model Sources
|
42 |
|
@@ -46,7 +41,6 @@ This gemma3n model was trained 2x faster with [Unsloth](https://github.com/unslo
|
|
46 |
## Uses
|
47 |
|
48 |
### Direct Use
|
49 |
-
|
50 |
MindSlate is designed for:
|
51 |
- Automatic flashcard generation from study materials
|
52 |
- Intelligent reminder creation
|
@@ -55,7 +49,6 @@ MindSlate is designed for:
|
|
55 |
- Personal knowledge base management
|
56 |
|
57 |
### Downstream Use
|
58 |
-
|
59 |
Can be integrated into:
|
60 |
- Educational platforms
|
61 |
- Productivity apps
|
@@ -63,7 +56,6 @@ Can be integrated into:
|
|
63 |
- Personal AI assistants
|
64 |
|
65 |
### Out-of-Scope Use
|
66 |
-
|
67 |
Not suitable for:
|
68 |
- Medical or legal advice
|
69 |
- High-stakes decision making
|
@@ -75,79 +67,151 @@ Not suitable for:
|
|
75 |
from unsloth import FastLanguageModel
|
76 |
import torch
|
77 |
|
|
|
78 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
79 |
-
model_name
|
80 |
-
max_seq_length
|
81 |
-
dtype
|
82 |
-
load_in_4bit
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
)
|
84 |
|
|
|
85 |
messages = [
|
86 |
-
{"role": "user", "content": "
|
87 |
]
|
88 |
|
|
|
89 |
inputs = tokenizer.apply_chat_template(
|
90 |
messages,
|
91 |
-
return_tensors
|
92 |
).to("cuda")
|
93 |
|
94 |
-
outputs = model.generate(
|
|
|
|
|
|
|
|
|
|
|
95 |
print(tokenizer.decode(outputs[0]))
|
96 |
```
|
97 |
|
98 |
## Training Details
|
99 |
|
100 |
### Training Data
|
|
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
-
|
108 |
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
- **Hardware**: Tesla T4 GPU (16GB VRAM)
|
114 |
-
- **Training Time**:
|
115 |
- **LoRA Configuration**:
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
## Evaluation
|
|
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
|
125 |
-
|
126 |
-
|
|
127 |
-
|
|
128 |
-
| Training Loss| 0.128 |
|
129 |
|
130 |
## Technical Specifications
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
136 |
|
137 |
## Citation
|
138 |
|
139 |
```bibtex
|
140 |
@misc{mindslate2025,
|
141 |
-
author = {Srinivas Nampalli},
|
142 |
-
title = {MindSlate:
|
143 |
year = {2025},
|
144 |
publisher = {Hugging Face},
|
145 |
-
howpublished = {\url{https://huggingface.co/Srinivasmec26/MindSlate}}
|
|
|
146 |
}
|
147 |
```
|
148 |
|
149 |
-
##
|
|
|
|
|
|
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
- [LinkedIn](https://www.linkedin.com/in/srinivas-nampalli/)
|
|
|
19 |
|
20 |
# MindSlate: Fine-tuned Gemma-3B for Personal Knowledge Management
|
21 |
|
22 |
+
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="250"/>](https://github.com/unslothai/unsloth)
|
23 |
|
24 |
## Model Description
|
25 |
|
|
|
30 |
- **Fine-tuning method**: 4-bit QLoRA
|
31 |
- **Languages**: English
|
32 |
- **License**: Apache 2.0
|
33 |
+
- **Developed by**: [Srinivas Nampalli](https://www.linkedin.com/in/srinivas-nampalli/)
|
34 |
+
- **Finetuned from**: [unsloth/gemma-3b-E2B-it-unsloth-bnb-4bit](https://huggingface.co/unsloth/gemma-3b-E2B-it-unsloth-bnb-4bit)
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
## Model Sources
|
37 |
|
|
|
41 |
## Uses
|
42 |
|
43 |
### Direct Use
|
|
|
44 |
MindSlate is designed for:
|
45 |
- Automatic flashcard generation from study materials
|
46 |
- Intelligent reminder creation
|
|
|
49 |
- Personal knowledge base management
|
50 |
|
51 |
### Downstream Use
|
|
|
52 |
Can be integrated into:
|
53 |
- Educational platforms
|
54 |
- Productivity apps
|
|
|
56 |
- Personal AI assistants
|
57 |
|
58 |
### Out-of-Scope Use
|
|
|
59 |
Not suitable for:
|
60 |
- Medical or legal advice
|
61 |
- High-stakes decision making
|
|
|
67 |
from unsloth import FastLanguageModel
|
68 |
import torch
|
69 |
|
70 |
+
# Load model with Unsloth optimizations
|
71 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
72 |
+
model_name="Srinivasmec26/MindSlate",
|
73 |
+
max_seq_length=2048,
|
74 |
+
dtype=torch.float16,
|
75 |
+
load_in_4bit=True,
|
76 |
+
)
|
77 |
+
|
78 |
+
# Set chat template
|
79 |
+
tokenizer = FastLanguageModel.get_chat_template(
|
80 |
+
tokenizer,
|
81 |
+
chat_template="gemma", # Use "chatml" or other templates if needed
|
82 |
)
|
83 |
|
84 |
+
# Create prompt
|
85 |
messages = [
|
86 |
+
{"role": "user", "content": "Convert to flashcard: Neural networks are computational models..."},
|
87 |
]
|
88 |
|
89 |
+
# Generate response
|
90 |
inputs = tokenizer.apply_chat_template(
|
91 |
messages,
|
92 |
+
return_tensors="pt",
|
93 |
).to("cuda")
|
94 |
|
95 |
+
outputs = model.generate(
|
96 |
+
**inputs,
|
97 |
+
max_new_tokens=256,
|
98 |
+
temperature=0.7,
|
99 |
+
top_p=0.95,
|
100 |
+
)
|
101 |
print(tokenizer.decode(outputs[0]))
|
102 |
```
|
103 |
|
104 |
## Training Details
|
105 |
|
106 |
### Training Data
|
107 |
+
The model was fine-tuned on a combination of structured datasets:
|
108 |
|
109 |
+
1. **Flashcards Dataset** (400 items):
|
110 |
+
```bibtex
|
111 |
+
@misc{educational_flashcards_2025,
|
112 |
+
title = {Multicultural Educational Flashcards Dataset},
|
113 |
+
author = {Srinivas, Yathi Pachauri, Swarnim Gupta},
|
114 |
+
year = {2025},
|
115 |
+
publisher = {Hugging Face},
|
116 |
+
url = {https://huggingface.co/datasets/Srinivasmec26/Educational-Flashcards-for-Global-Learners}
|
117 |
+
}
|
118 |
|
119 |
+
```
|
120 |
|
121 |
+
2. **Reminders Dataset** (100 items):
|
122 |
+
- *Private collection of contextual reminders*
|
123 |
+
- Format: {"input": "Meeting with team", "output": {"time": "2025-08-15 14:00", "location": "Zoom"}}
|
124 |
+
```bibtex
|
125 |
+
@misc{educational_flashcards_2025,
|
126 |
+
title = {Multicultural Educational Flashcards Dataset},
|
127 |
+
author = {Srinivas, Yathi Pachauri, Swarnim Gupta},
|
128 |
+
year = {2025},
|
129 |
+
publisher = {Hugging Face},
|
130 |
+
url = {https://huggingface.co/datasets/Srinivasmec26/Educational-Flashcards-for-Global-Learners}
|
131 |
+
}
|
132 |
|
133 |
+
```
|
134 |
+
|
135 |
+
3. **Summaries Dataset** (100 items):
|
136 |
+
- *Academic paper abstracts and summaries*
|
137 |
+
- Collected from arXiv and academic publications
|
138 |
+
```bibtex
|
139 |
+
@misc{knowledge_summaries_2025,
|
140 |
+
title = {Multidisciplinary-Educational-Summaries},
|
141 |
+
author = {Srinivas Nampalli, Yathi Pachauri, Swarnim Gupta},
|
142 |
+
year = {2025},
|
143 |
+
publisher = {Hugging Face},
|
144 |
+
url = {https://huggingface.co/datasets/Srinivasmec26/Multidisciplinary-Educational-Summaries}
|
145 |
+
}
|
146 |
+
```
|
147 |
+
|
148 |
+
4. **Todos Dataset** (100 items):
|
149 |
+
```bibtex
|
150 |
+
@misc{academic_todos_2025,
|
151 |
+
title = {Structured To-Do Lists for Learning and Projects},
|
152 |
+
author = {Nampalli Srinivas, Yathi Pachauri, Swarnim Gupta},
|
153 |
+
year = {2025},
|
154 |
+
publisher = {Hugging Face},
|
155 |
+
version = {1.0},
|
156 |
+
url = {https://huggingface.co/datasets/Srinivasmec26/Structured-Todo-Lists-for-Learning-and-Projects}
|
157 |
+
}
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
### Training Procedure
|
162 |
+
- **Preprocessing**: Standardized into `### Input: ... \n### Output: ...` format
|
163 |
+
- **Framework**: Unsloth 2025.8.1 + Hugging Face TRL
|
164 |
- **Hardware**: Tesla T4 GPU (16GB VRAM)
|
165 |
+
- **Training Time**: 51 minutes for 3 epochs
|
166 |
- **LoRA Configuration**:
|
167 |
+
```python
|
168 |
+
r=64, # LoRA rank
|
169 |
+
lora_alpha=128, # LoRA scaling factor
|
170 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
|
171 |
+
"gate_proj", "up_proj", "down_proj"],
|
172 |
+
```
|
173 |
+
- **Optimizer**: AdamW 8-bit
|
174 |
+
- **Learning Rate**: 2e-4 with linear decay
|
175 |
|
176 |
## Evaluation
|
177 |
+
*Comprehensive benchmark results will be uploaded in v1.1. Preliminary metrics:*
|
178 |
|
179 |
+
| Metric | Value |
|
180 |
+
|----------------------|--------|
|
181 |
+
| **Training Loss** | 0.1284 |
|
182 |
+
| **Perplexity** | TBD |
|
183 |
+
| **Task Accuracy** | TBD |
|
184 |
+
| **Inference Speed** | 42 tokens/sec (T4) |
|
|
|
185 |
|
186 |
## Technical Specifications
|
187 |
|
188 |
+
| Parameter | Value |
|
189 |
+
|----------------------|---------------------|
|
190 |
+
| Model Size | 3B parameters |
|
191 |
+
| Quantization | 4-bit (bnb) |
|
192 |
+
| Max Sequence Length | 2048 tokens |
|
193 |
+
| Fine-tuned Params | 1.66% (91.6M) |
|
194 |
+
| Precision | BF16/FP16 mixed |
|
195 |
+
| Architecture | Transformer Decoder |
|
196 |
|
197 |
## Citation
|
198 |
|
199 |
```bibtex
|
200 |
@misc{mindslate2025,
|
201 |
+
author = {Srinivas Nampalli },
|
202 |
+
title = {MindSlate: Efficient Personal Knowledge Management with Gemma-3B},
|
203 |
year = {2025},
|
204 |
publisher = {Hugging Face},
|
205 |
+
howpublished = {\url{https://huggingface.co/Srinivasmec26/MindSlate}},
|
206 |
+
note = {Fine-tuned using Unsloth for efficient training}
|
207 |
}
|
208 |
```
|
209 |
|
210 |
+
## Acknowledgements
|
211 |
+
- [Unsloth](https://github.com/unslothai/unsloth) for 2x faster fine-tuning
|
212 |
+
- Google for the [Gemma 3n](https://huggingface.co/sparkreaderapp/gemma-3n-E2B-it) base model
|
213 |
+
- Hugging Face for [TRL](https://huggingface.co/docs/trl) library
|
214 |
|
215 |
+
## Model Card Contact
|
216 |
+
For questions and collaborations:
|
217 |
+
- Srinivas Nampalli: [LinkedIn](https://www.linkedin.com/in/srinivas-nampalli/)
|