Diffusers
Safetensors
PixCellPipeline
File size: 30,836 Bytes
7147c53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional, Union

import torch
from torch import nn

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import is_torch_version, logging
from diffusers.models.attention import BasicTransformerBlock
from diffusers.models.attention_processor import Attention, AttentionProcessor, AttnProcessor, FusedAttnProcessor2_0
from diffusers.models.embeddings import PatchEmbed
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormSingle
from diffusers.models.activations import deprecate, FP32SiLU


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


# PixCell UNI conditioning
def pixcell_get_2d_sincos_pos_embed(
    embed_dim,
    grid_size,
    cls_token=False,
    extra_tokens=0,
    interpolation_scale=1.0,
    base_size=16,
    device: Optional[torch.device] = None,
    phase=0,
    output_type: str = "np",
):
    """
    Creates 2D sinusoidal positional embeddings.

    Args:
        embed_dim (`int`):
            The embedding dimension.
        grid_size (`int`):
            The size of the grid height and width.
        cls_token (`bool`, defaults to `False`):
            Whether or not to add a classification token.
        extra_tokens (`int`, defaults to `0`):
            The number of extra tokens to add.
        interpolation_scale (`float`, defaults to `1.0`):
            The scale of the interpolation.

    Returns:
        pos_embed (`torch.Tensor`):
            Shape is either `[grid_size * grid_size, embed_dim]` if not using cls_token, or `[1 + grid_size*grid_size,
            embed_dim]` if using cls_token
    """
    if output_type == "np":
        deprecation_message = (
            "`get_2d_sincos_pos_embed` uses `torch` and supports `device`."
            " `from_numpy` is no longer required."
            "  Pass `output_type='pt' to use the new version now."
        )
        deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
        raise ValueError("Not supported")
    if isinstance(grid_size, int):
        grid_size = (grid_size, grid_size)

    grid_h = (
        torch.arange(grid_size[0], device=device, dtype=torch.float32)
        / (grid_size[0] / base_size)
        / interpolation_scale
    )
    grid_w = (
        torch.arange(grid_size[1], device=device, dtype=torch.float32)
        / (grid_size[1] / base_size)
        / interpolation_scale
    )
    grid = torch.meshgrid(grid_w, grid_h, indexing="xy")  # here w goes first
    grid = torch.stack(grid, dim=0)

    grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
    pos_embed = pixcell_get_2d_sincos_pos_embed_from_grid(embed_dim, grid, phase=phase, output_type=output_type)
    if cls_token and extra_tokens > 0:
        pos_embed = torch.concat([torch.zeros([extra_tokens, embed_dim]), pos_embed], dim=0)
    return pos_embed


def pixcell_get_2d_sincos_pos_embed_from_grid(embed_dim, grid, phase=0, output_type="np"):
    r"""
    This function generates 2D sinusoidal positional embeddings from a grid.

    Args:
        embed_dim (`int`): The embedding dimension.
        grid (`torch.Tensor`): Grid of positions with shape `(H * W,)`.

    Returns:
        `torch.Tensor`: The 2D sinusoidal positional embeddings with shape `(H * W, embed_dim)`
    """
    if output_type == "np":
        deprecation_message = (
            "`get_2d_sincos_pos_embed_from_grid` uses `torch` and supports `device`."
            " `from_numpy` is no longer required."
            "  Pass `output_type='pt' to use the new version now."
        )
        deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
        raise ValueError("Not supported")
    if embed_dim % 2 != 0:
        raise ValueError("embed_dim must be divisible by 2")

    # use half of dimensions to encode grid_h
    emb_h = pixcell_get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0], phase=phase, output_type=output_type)  # (H*W, D/2)
    emb_w = pixcell_get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1], phase=phase, output_type=output_type)  # (H*W, D/2)

    emb = torch.concat([emb_h, emb_w], dim=1)  # (H*W, D)
    return emb


def pixcell_get_1d_sincos_pos_embed_from_grid(embed_dim, pos, phase=0, output_type="np"):
    """
    This function generates 1D positional embeddings from a grid.

    Args:
        embed_dim (`int`): The embedding dimension `D`
        pos (`torch.Tensor`): 1D tensor of positions with shape `(M,)`

    Returns:
        `torch.Tensor`: Sinusoidal positional embeddings of shape `(M, D)`.
    """
    if output_type == "np":
        deprecation_message = (
            "`get_1d_sincos_pos_embed_from_grid` uses `torch` and supports `device`."
            " `from_numpy` is no longer required."
            "  Pass `output_type='pt' to use the new version now."
        )
        deprecate("output_type=='np'", "0.34.0", deprecation_message, standard_warn=False)
        raise ValueError("Not supported")
    if embed_dim % 2 != 0:
        raise ValueError("embed_dim must be divisible by 2")

    omega = torch.arange(embed_dim // 2, device=pos.device, dtype=torch.float64)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D/2,)

    pos = pos.reshape(-1) + phase  # (M,)
    out = torch.outer(pos, omega)  # (M, D/2), outer product

    emb_sin = torch.sin(out)  # (M, D/2)
    emb_cos = torch.cos(out)  # (M, D/2)

    emb = torch.concat([emb_sin, emb_cos], dim=1)  # (M, D)
    return emb


class PixcellUNIProjection(nn.Module):
    """
    Projects UNI embeddings. Also handles dropout for classifier-free guidance.

    Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
    """

    def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh", num_tokens=1):
        super().__init__()
        if out_features is None:
            out_features = hidden_size
        self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True)
        if act_fn == "gelu_tanh":
            self.act_1 = nn.GELU(approximate="tanh")
        elif act_fn == "silu":
            self.act_1 = nn.SiLU()
        elif act_fn == "silu_fp32":
            self.act_1 = FP32SiLU()
        else:
            raise ValueError(f"Unknown activation function: {act_fn}")
        self.linear_2 = nn.Linear(in_features=hidden_size, out_features=out_features, bias=True)

        self.register_buffer("uncond_embedding", nn.Parameter(torch.randn(num_tokens, in_features) / in_features ** 0.5))

    def forward(self, caption):
        hidden_states = self.linear_1(caption)
        hidden_states = self.act_1(hidden_states)
        hidden_states = self.linear_2(hidden_states)
        return hidden_states

class UNIPosEmbed(nn.Module):
    """
    Adds positional embeddings to the UNI conditions.

    Args:
        height (`int`, defaults to `224`): The height of the image.
        width (`int`, defaults to `224`): The width of the image.
        patch_size (`int`, defaults to `16`): The size of the patches.
        in_channels (`int`, defaults to `3`): The number of input channels.
        embed_dim (`int`, defaults to `768`): The output dimension of the embedding.
        layer_norm (`bool`, defaults to `False`): Whether or not to use layer normalization.
        flatten (`bool`, defaults to `True`): Whether or not to flatten the output.
        bias (`bool`, defaults to `True`): Whether or not to use bias.
        interpolation_scale (`float`, defaults to `1`): The scale of the interpolation.
        pos_embed_type (`str`, defaults to `"sincos"`): The type of positional embedding.
        pos_embed_max_size (`int`, defaults to `None`): The maximum size of the positional embedding.
    """

    def __init__(
        self,
        height=1,
        width=1,
        base_size=16,
        embed_dim=768,
        interpolation_scale=1,
        pos_embed_type="sincos",
    ):
        super().__init__()

        num_embeds = height*width
        grid_size = int(num_embeds ** 0.5)

        if pos_embed_type == "sincos":
            y_pos_embed = pixcell_get_2d_sincos_pos_embed(
                embed_dim,
                grid_size,
                base_size=base_size,
                interpolation_scale=interpolation_scale,
                output_type="pt",
                phase = base_size // num_embeds
            )
            self.register_buffer("y_pos_embed", y_pos_embed.float().unsqueeze(0))
        else:
            raise ValueError("`pos_embed_type` not supported")

    def forward(self, uni_embeds):
        return (uni_embeds + self.y_pos_embed).to(uni_embeds.dtype)



class PixCellTransformer2DModel(ModelMixin, ConfigMixin):
    r"""
    A 2D Transformer model as introduced in PixArt family of models (https://arxiv.org/abs/2310.00426,
    https://arxiv.org/abs/2403.04692). Modified for the pathology domain.

    Parameters:
        num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (int, optional, defaults to 72): The number of channels in each head.
        in_channels (int, defaults to 4): The number of channels in the input.
        out_channels (int, optional):
            The number of channels in the output. Specify this parameter if the output channel number differs from the
            input.
        num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use.
        dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks.
        norm_num_groups (int, optional, defaults to 32):
            Number of groups for group normalization within Transformer blocks.
        cross_attention_dim (int, optional):
            The dimensionality for cross-attention layers, typically matching the encoder's hidden dimension.
        attention_bias (bool, optional, defaults to True):
            Configure if the Transformer blocks' attention should contain a bias parameter.
        sample_size (int, defaults to 128):
            The width of the latent images. This parameter is fixed during training.
        patch_size (int, defaults to 2):
            Size of the patches the model processes, relevant for architectures working on non-sequential data.
        activation_fn (str, optional, defaults to "gelu-approximate"):
            Activation function to use in feed-forward networks within Transformer blocks.
        num_embeds_ada_norm (int, optional, defaults to 1000):
            Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during
            inference.
        upcast_attention (bool, optional, defaults to False):
            If true, upcasts the attention mechanism dimensions for potentially improved performance.
        norm_type (str, optional, defaults to "ada_norm_zero"):
            Specifies the type of normalization used, can be 'ada_norm_zero'.
        norm_elementwise_affine (bool, optional, defaults to False):
            If true, enables element-wise affine parameters in the normalization layers.
        norm_eps (float, optional, defaults to 1e-6):
            A small constant added to the denominator in normalization layers to prevent division by zero.
        interpolation_scale (int, optional): Scale factor to use during interpolating the position embeddings.
        use_additional_conditions (bool, optional): If we're using additional conditions as inputs.
        attention_type (str, optional, defaults to "default"): Kind of attention mechanism to be used.
        caption_channels (int, optional, defaults to None):
            Number of channels to use for projecting the caption embeddings.
        use_linear_projection (bool, optional, defaults to False):
            Deprecated argument. Will be removed in a future version.
        num_vector_embeds (bool, optional, defaults to False):
            Deprecated argument. Will be removed in a future version.
    """

    _supports_gradient_checkpointing = True
    _no_split_modules = ["BasicTransformerBlock", "PatchEmbed"]

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 72,
        in_channels: int = 4,
        out_channels: Optional[int] = 8,
        num_layers: int = 28,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = 1152,
        attention_bias: bool = True,
        sample_size: int = 128,
        patch_size: int = 2,
        activation_fn: str = "gelu-approximate",
        num_embeds_ada_norm: Optional[int] = 1000,
        upcast_attention: bool = False,
        norm_type: str = "ada_norm_single",
        norm_elementwise_affine: bool = False,
        norm_eps: float = 1e-6,
        interpolation_scale: Optional[int] = None,
        use_additional_conditions: Optional[bool] = None,
        caption_channels: Optional[int] = None,
        caption_num_tokens: int = 1,
        attention_type: Optional[str] = "default",
    ):
        super().__init__()

        # Validate inputs.
        if norm_type != "ada_norm_single":
            raise NotImplementedError(
                f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
            )
        elif norm_type == "ada_norm_single" and num_embeds_ada_norm is None:
            raise ValueError(
                f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
            )

        # Set some common variables used across the board.
        self.attention_head_dim = attention_head_dim
        self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
        self.out_channels = in_channels if out_channels is None else out_channels
        if use_additional_conditions is None:
            if sample_size == 128:
                use_additional_conditions = True
            else:
                use_additional_conditions = False
        self.use_additional_conditions = use_additional_conditions

        self.gradient_checkpointing = False

        # 2. Initialize the position embedding and transformer blocks.
        self.height = self.config.sample_size
        self.width = self.config.sample_size

        interpolation_scale = (
            self.config.interpolation_scale
            if self.config.interpolation_scale is not None
            else max(self.config.sample_size // 64, 1)
        )
        self.pos_embed = PatchEmbed(
            height=self.config.sample_size,
            width=self.config.sample_size,
            patch_size=self.config.patch_size,
            in_channels=self.config.in_channels,
            embed_dim=self.inner_dim,
            interpolation_scale=interpolation_scale,
        )

        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    self.inner_dim,
                    self.config.num_attention_heads,
                    self.config.attention_head_dim,
                    dropout=self.config.dropout,
                    cross_attention_dim=self.config.cross_attention_dim,
                    activation_fn=self.config.activation_fn,
                    num_embeds_ada_norm=self.config.num_embeds_ada_norm,
                    attention_bias=self.config.attention_bias,
                    upcast_attention=self.config.upcast_attention,
                    norm_type=norm_type,
                    norm_elementwise_affine=self.config.norm_elementwise_affine,
                    norm_eps=self.config.norm_eps,
                    attention_type=self.config.attention_type,
                )
                for _ in range(self.config.num_layers)
            ]
        )

        # Initialize the positional embedding for the conditions for >1 UNI embeddings 
        if self.config.caption_num_tokens == 1:
            self.y_pos_embed = None
        else:
            # 1:1 aspect ratio
            self.uni_height = int(self.config.caption_num_tokens ** 0.5)
            self.uni_width = int(self.config.caption_num_tokens ** 0.5)

            self.y_pos_embed = UNIPosEmbed(
                height=self.uni_height,
                width=self.uni_width,
                base_size=self.config.sample_size // self.config.patch_size,
                embed_dim=self.config.caption_channels,
                interpolation_scale=2, # Should this be fixed?
                pos_embed_type="sincos", # This is fixed
            )

        # 3. Output blocks.
        self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
        self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
        self.proj_out = nn.Linear(self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels)

        self.adaln_single = AdaLayerNormSingle(
            self.inner_dim, use_additional_conditions=self.use_additional_conditions
        )
        self.caption_projection = None
        if self.config.caption_channels is not None:
            self.caption_projection = PixcellUNIProjection(
                in_features=self.config.caption_channels, hidden_size=self.inner_dim, num_tokens=self.config.caption_num_tokens,
            )

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.

        Safe to just use `AttnProcessor()` as PixArt doesn't have any exotic attention processors in default model.
        """
        self.set_attn_processor(AttnProcessor())

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
    def fuse_qkv_projections(self):
        """
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>
        """
        self.original_attn_processors = None

        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

        self.original_attn_processors = self.attn_processors

        for module in self.modules():
            if isinstance(module, Attention):
                module.fuse_projections(fuse=True)

        self.set_attn_processor(FusedAttnProcessor2_0())

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
    def unfuse_qkv_projections(self):
        """Disables the fused QKV projection if enabled.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        """
        if self.original_attn_processors is not None:
            self.set_attn_processor(self.original_attn_processors)

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        added_cond_kwargs: Dict[str, torch.Tensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        return_dict: bool = True,
    ):
        """
        The [`PixCellTransformer2DModel`] forward method.

        Args:
            hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
                Input `hidden_states`.
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep (`torch.LongTensor`, *optional*):
                Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
            added_cond_kwargs: (`Dict[str, Any]`, *optional*): Additional conditions to be used as inputs.
            cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            attention_mask ( `torch.Tensor`, *optional*):
                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
                negative values to the attention scores corresponding to "discard" tokens.
            encoder_attention_mask ( `torch.Tensor`, *optional*):
                Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:

                    * Mask `(batch, sequence_length)` True = keep, False = discard.
                    * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.

                If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
                above. This bias will be added to the cross-attention scores.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.

        Returns:
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
        """
        if self.use_additional_conditions and added_cond_kwargs is None:
            raise ValueError("`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`.")

        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
        #   we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
        #   we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
        if attention_mask is not None and attention_mask.ndim == 2:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
            attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
            encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        # 1. Input
        batch_size = hidden_states.shape[0]
        height, width = (
            hidden_states.shape[-2] // self.config.patch_size,
            hidden_states.shape[-1] // self.config.patch_size,
        )
        hidden_states = self.pos_embed(hidden_states)

        timestep, embedded_timestep = self.adaln_single(
            timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
        )

        if self.caption_projection is not None:
            # Add positional embeddings to conditions if >1 UNI are given
            if self.y_pos_embed is not None:
                encoder_hidden_states = self.y_pos_embed(encoder_hidden_states)
            encoder_hidden_states = self.caption_projection(encoder_hidden_states)
            encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])

        # 2. Blocks
        for block in self.transformer_blocks:
            if torch.is_grad_enabled() and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    attention_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    timestep,
                    cross_attention_kwargs,
                    None,
                    **ckpt_kwargs,
                )
            else:
                hidden_states = block(
                    hidden_states,
                    attention_mask=attention_mask,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    timestep=timestep,
                    cross_attention_kwargs=cross_attention_kwargs,
                    class_labels=None,
                )

        # 3. Output
        shift, scale = (
            self.scale_shift_table[None] + embedded_timestep[:, None].to(self.scale_shift_table.device)
        ).chunk(2, dim=1)
        hidden_states = self.norm_out(hidden_states)
        # Modulation
        hidden_states = hidden_states * (1 + scale.to(hidden_states.device)) + shift.to(hidden_states.device)
        hidden_states = self.proj_out(hidden_states)
        hidden_states = hidden_states.squeeze(1)

        # unpatchify
        hidden_states = hidden_states.reshape(
            shape=(-1, height, width, self.config.patch_size, self.config.patch_size, self.out_channels)
        )
        hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
        output = hidden_states.reshape(
            shape=(-1, self.out_channels, height * self.config.patch_size, width * self.config.patch_size)
        )

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)