File size: 30,836 Bytes
7147c53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional, Union
import torch
from torch import nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import is_torch_version, logging
from diffusers.models.attention import BasicTransformerBlock
from diffusers.models.attention_processor import Attention, AttentionProcessor, AttnProcessor, FusedAttnProcessor2_0
from diffusers.models.embeddings import PatchEmbed
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormSingle
from diffusers.models.activations import deprecate, FP32SiLU
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# PixCell UNI conditioning
def pixcell_get_2d_sincos_pos_embed(
embed_dim,
grid_size,
cls_token=False,
extra_tokens=0,
interpolation_scale=1.0,
base_size=16,
device: Optional[torch.device] = None,
phase=0,
output_type: str = "np",
):
"""
Creates 2D sinusoidal positional embeddings.
Args:
embed_dim (`int`):
The embedding dimension.
grid_size (`int`):
The size of the grid height and width.
cls_token (`bool`, defaults to `False`):
Whether or not to add a classification token.
extra_tokens (`int`, defaults to `0`):
The number of extra tokens to add.
interpolation_scale (`float`, defaults to `1.0`):
The scale of the interpolation.
Returns:
pos_embed (`torch.Tensor`):
Shape is either `[grid_size * grid_size, embed_dim]` if not using cls_token, or `[1 + grid_size*grid_size,
embed_dim]` if using cls_token
"""
if output_type == "np":
deprecation_message = (
"`get_2d_sincos_pos_embed` uses `torch` and supports `device`."
" `from_numpy` is no longer required."
" Pass `output_type='pt' to use the new version now."
)
deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
raise ValueError("Not supported")
if isinstance(grid_size, int):
grid_size = (grid_size, grid_size)
grid_h = (
torch.arange(grid_size[0], device=device, dtype=torch.float32)
/ (grid_size[0] / base_size)
/ interpolation_scale
)
grid_w = (
torch.arange(grid_size[1], device=device, dtype=torch.float32)
/ (grid_size[1] / base_size)
/ interpolation_scale
)
grid = torch.meshgrid(grid_w, grid_h, indexing="xy") # here w goes first
grid = torch.stack(grid, dim=0)
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
pos_embed = pixcell_get_2d_sincos_pos_embed_from_grid(embed_dim, grid, phase=phase, output_type=output_type)
if cls_token and extra_tokens > 0:
pos_embed = torch.concat([torch.zeros([extra_tokens, embed_dim]), pos_embed], dim=0)
return pos_embed
def pixcell_get_2d_sincos_pos_embed_from_grid(embed_dim, grid, phase=0, output_type="np"):
r"""
This function generates 2D sinusoidal positional embeddings from a grid.
Args:
embed_dim (`int`): The embedding dimension.
grid (`torch.Tensor`): Grid of positions with shape `(H * W,)`.
Returns:
`torch.Tensor`: The 2D sinusoidal positional embeddings with shape `(H * W, embed_dim)`
"""
if output_type == "np":
deprecation_message = (
"`get_2d_sincos_pos_embed_from_grid` uses `torch` and supports `device`."
" `from_numpy` is no longer required."
" Pass `output_type='pt' to use the new version now."
)
deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
raise ValueError("Not supported")
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be divisible by 2")
# use half of dimensions to encode grid_h
emb_h = pixcell_get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0], phase=phase, output_type=output_type) # (H*W, D/2)
emb_w = pixcell_get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1], phase=phase, output_type=output_type) # (H*W, D/2)
emb = torch.concat([emb_h, emb_w], dim=1) # (H*W, D)
return emb
def pixcell_get_1d_sincos_pos_embed_from_grid(embed_dim, pos, phase=0, output_type="np"):
"""
This function generates 1D positional embeddings from a grid.
Args:
embed_dim (`int`): The embedding dimension `D`
pos (`torch.Tensor`): 1D tensor of positions with shape `(M,)`
Returns:
`torch.Tensor`: Sinusoidal positional embeddings of shape `(M, D)`.
"""
if output_type == "np":
deprecation_message = (
"`get_1d_sincos_pos_embed_from_grid` uses `torch` and supports `device`."
" `from_numpy` is no longer required."
" Pass `output_type='pt' to use the new version now."
)
deprecate("output_type=='np'", "0.34.0", deprecation_message, standard_warn=False)
raise ValueError("Not supported")
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be divisible by 2")
omega = torch.arange(embed_dim // 2, device=pos.device, dtype=torch.float64)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) + phase # (M,)
out = torch.outer(pos, omega) # (M, D/2), outer product
emb_sin = torch.sin(out) # (M, D/2)
emb_cos = torch.cos(out) # (M, D/2)
emb = torch.concat([emb_sin, emb_cos], dim=1) # (M, D)
return emb
class PixcellUNIProjection(nn.Module):
"""
Projects UNI embeddings. Also handles dropout for classifier-free guidance.
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
"""
def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh", num_tokens=1):
super().__init__()
if out_features is None:
out_features = hidden_size
self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True)
if act_fn == "gelu_tanh":
self.act_1 = nn.GELU(approximate="tanh")
elif act_fn == "silu":
self.act_1 = nn.SiLU()
elif act_fn == "silu_fp32":
self.act_1 = FP32SiLU()
else:
raise ValueError(f"Unknown activation function: {act_fn}")
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=out_features, bias=True)
self.register_buffer("uncond_embedding", nn.Parameter(torch.randn(num_tokens, in_features) / in_features ** 0.5))
def forward(self, caption):
hidden_states = self.linear_1(caption)
hidden_states = self.act_1(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
class UNIPosEmbed(nn.Module):
"""
Adds positional embeddings to the UNI conditions.
Args:
height (`int`, defaults to `224`): The height of the image.
width (`int`, defaults to `224`): The width of the image.
patch_size (`int`, defaults to `16`): The size of the patches.
in_channels (`int`, defaults to `3`): The number of input channels.
embed_dim (`int`, defaults to `768`): The output dimension of the embedding.
layer_norm (`bool`, defaults to `False`): Whether or not to use layer normalization.
flatten (`bool`, defaults to `True`): Whether or not to flatten the output.
bias (`bool`, defaults to `True`): Whether or not to use bias.
interpolation_scale (`float`, defaults to `1`): The scale of the interpolation.
pos_embed_type (`str`, defaults to `"sincos"`): The type of positional embedding.
pos_embed_max_size (`int`, defaults to `None`): The maximum size of the positional embedding.
"""
def __init__(
self,
height=1,
width=1,
base_size=16,
embed_dim=768,
interpolation_scale=1,
pos_embed_type="sincos",
):
super().__init__()
num_embeds = height*width
grid_size = int(num_embeds ** 0.5)
if pos_embed_type == "sincos":
y_pos_embed = pixcell_get_2d_sincos_pos_embed(
embed_dim,
grid_size,
base_size=base_size,
interpolation_scale=interpolation_scale,
output_type="pt",
phase = base_size // num_embeds
)
self.register_buffer("y_pos_embed", y_pos_embed.float().unsqueeze(0))
else:
raise ValueError("`pos_embed_type` not supported")
def forward(self, uni_embeds):
return (uni_embeds + self.y_pos_embed).to(uni_embeds.dtype)
class PixCellTransformer2DModel(ModelMixin, ConfigMixin):
r"""
A 2D Transformer model as introduced in PixArt family of models (https://arxiv.org/abs/2310.00426,
https://arxiv.org/abs/2403.04692). Modified for the pathology domain.
Parameters:
num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (int, optional, defaults to 72): The number of channels in each head.
in_channels (int, defaults to 4): The number of channels in the input.
out_channels (int, optional):
The number of channels in the output. Specify this parameter if the output channel number differs from the
input.
num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use.
dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks.
norm_num_groups (int, optional, defaults to 32):
Number of groups for group normalization within Transformer blocks.
cross_attention_dim (int, optional):
The dimensionality for cross-attention layers, typically matching the encoder's hidden dimension.
attention_bias (bool, optional, defaults to True):
Configure if the Transformer blocks' attention should contain a bias parameter.
sample_size (int, defaults to 128):
The width of the latent images. This parameter is fixed during training.
patch_size (int, defaults to 2):
Size of the patches the model processes, relevant for architectures working on non-sequential data.
activation_fn (str, optional, defaults to "gelu-approximate"):
Activation function to use in feed-forward networks within Transformer blocks.
num_embeds_ada_norm (int, optional, defaults to 1000):
Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during
inference.
upcast_attention (bool, optional, defaults to False):
If true, upcasts the attention mechanism dimensions for potentially improved performance.
norm_type (str, optional, defaults to "ada_norm_zero"):
Specifies the type of normalization used, can be 'ada_norm_zero'.
norm_elementwise_affine (bool, optional, defaults to False):
If true, enables element-wise affine parameters in the normalization layers.
norm_eps (float, optional, defaults to 1e-6):
A small constant added to the denominator in normalization layers to prevent division by zero.
interpolation_scale (int, optional): Scale factor to use during interpolating the position embeddings.
use_additional_conditions (bool, optional): If we're using additional conditions as inputs.
attention_type (str, optional, defaults to "default"): Kind of attention mechanism to be used.
caption_channels (int, optional, defaults to None):
Number of channels to use for projecting the caption embeddings.
use_linear_projection (bool, optional, defaults to False):
Deprecated argument. Will be removed in a future version.
num_vector_embeds (bool, optional, defaults to False):
Deprecated argument. Will be removed in a future version.
"""
_supports_gradient_checkpointing = True
_no_split_modules = ["BasicTransformerBlock", "PatchEmbed"]
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 72,
in_channels: int = 4,
out_channels: Optional[int] = 8,
num_layers: int = 28,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = 1152,
attention_bias: bool = True,
sample_size: int = 128,
patch_size: int = 2,
activation_fn: str = "gelu-approximate",
num_embeds_ada_norm: Optional[int] = 1000,
upcast_attention: bool = False,
norm_type: str = "ada_norm_single",
norm_elementwise_affine: bool = False,
norm_eps: float = 1e-6,
interpolation_scale: Optional[int] = None,
use_additional_conditions: Optional[bool] = None,
caption_channels: Optional[int] = None,
caption_num_tokens: int = 1,
attention_type: Optional[str] = "default",
):
super().__init__()
# Validate inputs.
if norm_type != "ada_norm_single":
raise NotImplementedError(
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
)
elif norm_type == "ada_norm_single" and num_embeds_ada_norm is None:
raise ValueError(
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
)
# Set some common variables used across the board.
self.attention_head_dim = attention_head_dim
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
self.out_channels = in_channels if out_channels is None else out_channels
if use_additional_conditions is None:
if sample_size == 128:
use_additional_conditions = True
else:
use_additional_conditions = False
self.use_additional_conditions = use_additional_conditions
self.gradient_checkpointing = False
# 2. Initialize the position embedding and transformer blocks.
self.height = self.config.sample_size
self.width = self.config.sample_size
interpolation_scale = (
self.config.interpolation_scale
if self.config.interpolation_scale is not None
else max(self.config.sample_size // 64, 1)
)
self.pos_embed = PatchEmbed(
height=self.config.sample_size,
width=self.config.sample_size,
patch_size=self.config.patch_size,
in_channels=self.config.in_channels,
embed_dim=self.inner_dim,
interpolation_scale=interpolation_scale,
)
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
self.inner_dim,
self.config.num_attention_heads,
self.config.attention_head_dim,
dropout=self.config.dropout,
cross_attention_dim=self.config.cross_attention_dim,
activation_fn=self.config.activation_fn,
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
attention_bias=self.config.attention_bias,
upcast_attention=self.config.upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=self.config.norm_elementwise_affine,
norm_eps=self.config.norm_eps,
attention_type=self.config.attention_type,
)
for _ in range(self.config.num_layers)
]
)
# Initialize the positional embedding for the conditions for >1 UNI embeddings
if self.config.caption_num_tokens == 1:
self.y_pos_embed = None
else:
# 1:1 aspect ratio
self.uni_height = int(self.config.caption_num_tokens ** 0.5)
self.uni_width = int(self.config.caption_num_tokens ** 0.5)
self.y_pos_embed = UNIPosEmbed(
height=self.uni_height,
width=self.uni_width,
base_size=self.config.sample_size // self.config.patch_size,
embed_dim=self.config.caption_channels,
interpolation_scale=2, # Should this be fixed?
pos_embed_type="sincos", # This is fixed
)
# 3. Output blocks.
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
self.proj_out = nn.Linear(self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels)
self.adaln_single = AdaLayerNormSingle(
self.inner_dim, use_additional_conditions=self.use_additional_conditions
)
self.caption_projection = None
if self.config.caption_channels is not None:
self.caption_projection = PixcellUNIProjection(
in_features=self.config.caption_channels, hidden_size=self.inner_dim, num_tokens=self.config.caption_num_tokens,
)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
Safe to just use `AttnProcessor()` as PixArt doesn't have any exotic attention processors in default model.
"""
self.set_attn_processor(AttnProcessor())
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
def fuse_qkv_projections(self):
"""
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
are fused. For cross-attention modules, key and value projection matrices are fused.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
self.original_attn_processors = None
for _, attn_processor in self.attn_processors.items():
if "Added" in str(attn_processor.__class__.__name__):
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
self.original_attn_processors = self.attn_processors
for module in self.modules():
if isinstance(module, Attention):
module.fuse_projections(fuse=True)
self.set_attn_processor(FusedAttnProcessor2_0())
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
def unfuse_qkv_projections(self):
"""Disables the fused QKV projection if enabled.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
if self.original_attn_processors is not None:
self.set_attn_processor(self.original_attn_processors)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
added_cond_kwargs: Dict[str, torch.Tensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
return_dict: bool = True,
):
"""
The [`PixCellTransformer2DModel`] forward method.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
Input `hidden_states`.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep (`torch.LongTensor`, *optional*):
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
added_cond_kwargs: (`Dict[str, Any]`, *optional*): Additional conditions to be used as inputs.
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
attention_mask ( `torch.Tensor`, *optional*):
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
negative values to the attention scores corresponding to "discard" tokens.
encoder_attention_mask ( `torch.Tensor`, *optional*):
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
* Mask `(batch, sequence_length)` True = keep, False = discard.
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
above. This bias will be added to the cross-attention scores.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if self.use_additional_conditions and added_cond_kwargs is None:
raise ValueError("`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`.")
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None and attention_mask.ndim == 2:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
# 1. Input
batch_size = hidden_states.shape[0]
height, width = (
hidden_states.shape[-2] // self.config.patch_size,
hidden_states.shape[-1] // self.config.patch_size,
)
hidden_states = self.pos_embed(hidden_states)
timestep, embedded_timestep = self.adaln_single(
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
)
if self.caption_projection is not None:
# Add positional embeddings to conditions if >1 UNI are given
if self.y_pos_embed is not None:
encoder_hidden_states = self.y_pos_embed(encoder_hidden_states)
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
# 2. Blocks
for block in self.transformer_blocks:
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
timestep,
cross_attention_kwargs,
None,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
timestep=timestep,
cross_attention_kwargs=cross_attention_kwargs,
class_labels=None,
)
# 3. Output
shift, scale = (
self.scale_shift_table[None] + embedded_timestep[:, None].to(self.scale_shift_table.device)
).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states)
# Modulation
hidden_states = hidden_states * (1 + scale.to(hidden_states.device)) + shift.to(hidden_states.device)
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.squeeze(1)
# unpatchify
hidden_states = hidden_states.reshape(
shape=(-1, height, width, self.config.patch_size, self.config.patch_size, self.out_channels)
)
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
output = hidden_states.reshape(
shape=(-1, self.out_channels, height * self.config.patch_size, width * self.config.patch_size)
)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
|