Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +5 -21
- test_image.png +3 -0
.gitattributes
CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
test_image.jpg filter=lfs diff=lfs merge=lfs -text
|
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
test_image.jpg filter=lfs diff=lfs merge=lfs -text
|
37 |
+
test_image.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -66,30 +66,14 @@ from PIL import Image
|
|
66 |
from huggingface_hub import hf_hub_download
|
67 |
|
68 |
# This is an example image we provide
|
69 |
-
path = hf_hub_download(repo_id="StonyBrook-CVLab/PixCell-256", filename="test_image.
|
70 |
image = Image.open(path)
|
71 |
|
72 |
-
# Extract UNI from
|
73 |
-
|
74 |
-
|
75 |
-
uni_emb =
|
76 |
-
for k in range(n_patches):
|
77 |
-
# Extract random crop
|
78 |
-
sz = pipeline.transformer.config.sample_size * pipeline.vae_scale_factor
|
79 |
|
80 |
-
x1 = np.random.randint(0, image.size[0] - sz+1)
|
81 |
-
y1 = np.random.randint(0, image.size[1] - sz+1)
|
82 |
-
image_patch = image.crop((x1, y1, x1+sz, y1+sz))
|
83 |
-
patches.append(image_patch)
|
84 |
-
print("Extracted patch:", patches[-1].size)
|
85 |
-
|
86 |
-
# For 256x256 directly pass through UNI
|
87 |
-
uni_image = transform(image_patch).unsqueeze(dim=0)
|
88 |
-
with torch.inference_mode():
|
89 |
-
feature_emb = uni_model(uni_image.to(device))
|
90 |
-
uni_emb.append(feature_emb)
|
91 |
-
|
92 |
-
uni_emb = torch.stack(uni_emb, dim=0)
|
93 |
print("Extracted UNI:", uni_emb.shape)
|
94 |
|
95 |
# Get unconditional embedding for classifier-free guidance
|
|
|
66 |
from huggingface_hub import hf_hub_download
|
67 |
|
68 |
# This is an example image we provide
|
69 |
+
path = hf_hub_download(repo_id="StonyBrook-CVLab/PixCell-256", filename="test_image.png")
|
70 |
image = Image.open(path)
|
71 |
|
72 |
+
# Extract UNI embedding from the image
|
73 |
+
uni_inp = transform(image).unsqueeze(dim=0)
|
74 |
+
with torch.inference_mode():
|
75 |
+
uni_emb = uni_model(uni_inp.to(device)).unsqueeze(dim=0)
|
|
|
|
|
|
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
print("Extracted UNI:", uni_emb.shape)
|
78 |
|
79 |
# Get unconditional embedding for classifier-free guidance
|
test_image.png
ADDED
![]() |
Git LFS Details
|