Delete pipeline.py
Browse files- pipeline.py +0 -1122
pipeline.py
DELETED
@@ -1,1122 +0,0 @@
|
|
1 |
-
# Copyright 2024 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
import inspect
|
16 |
-
import urllib.parse as ul
|
17 |
-
from typing import Callable, List, Optional, Tuple, Union
|
18 |
-
|
19 |
-
import torch
|
20 |
-
from torch import nn
|
21 |
-
|
22 |
-
from diffusers.image_processor import PixArtImageProcessor
|
23 |
-
from diffusers.models import AutoencoderKL
|
24 |
-
from diffusers.schedulers import DPMSolverMultistepScheduler
|
25 |
-
from diffusers.utils import (
|
26 |
-
BACKENDS_MAPPING,
|
27 |
-
deprecate,
|
28 |
-
logging,
|
29 |
-
replace_example_docstring,
|
30 |
-
)
|
31 |
-
from diffusers.utils.torch_utils import randn_tensor
|
32 |
-
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
33 |
-
|
34 |
-
from pixcell_transformer_2d import PixCellTransformer2DModel
|
35 |
-
|
36 |
-
|
37 |
-
from typing import Any, Dict, Optional, Union
|
38 |
-
|
39 |
-
|
40 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
41 |
-
from diffusers.utils import is_torch_version, logging
|
42 |
-
from diffusers.models.attention import BasicTransformerBlock
|
43 |
-
from diffusers.models.attention_processor import Attention, AttentionProcessor, AttnProcessor, FusedAttnProcessor2_0
|
44 |
-
from diffusers.models.embeddings import PatchEmbed
|
45 |
-
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
46 |
-
from diffusers.models.modeling_utils import ModelMixin
|
47 |
-
from diffusers.models.normalization import AdaLayerNormSingle
|
48 |
-
|
49 |
-
from typing import List, Optional, Tuple, Union
|
50 |
-
|
51 |
-
import numpy as np
|
52 |
-
import torch
|
53 |
-
import torch.nn.functional as F
|
54 |
-
from torch import nn
|
55 |
-
|
56 |
-
from diffusers.models.activations import deprecate, FP32SiLU
|
57 |
-
|
58 |
-
|
59 |
-
def pixcell_get_2d_sincos_pos_embed(
|
60 |
-
embed_dim,
|
61 |
-
grid_size,
|
62 |
-
cls_token=False,
|
63 |
-
extra_tokens=0,
|
64 |
-
interpolation_scale=1.0,
|
65 |
-
base_size=16,
|
66 |
-
device: Optional[torch.device] = None,
|
67 |
-
phase=0,
|
68 |
-
output_type: str = "np",
|
69 |
-
):
|
70 |
-
"""
|
71 |
-
Creates 2D sinusoidal positional embeddings.
|
72 |
-
|
73 |
-
Args:
|
74 |
-
embed_dim (`int`):
|
75 |
-
The embedding dimension.
|
76 |
-
grid_size (`int`):
|
77 |
-
The size of the grid height and width.
|
78 |
-
cls_token (`bool`, defaults to `False`):
|
79 |
-
Whether or not to add a classification token.
|
80 |
-
extra_tokens (`int`, defaults to `0`):
|
81 |
-
The number of extra tokens to add.
|
82 |
-
interpolation_scale (`float`, defaults to `1.0`):
|
83 |
-
The scale of the interpolation.
|
84 |
-
|
85 |
-
Returns:
|
86 |
-
pos_embed (`torch.Tensor`):
|
87 |
-
Shape is either `[grid_size * grid_size, embed_dim]` if not using cls_token, or `[1 + grid_size*grid_size,
|
88 |
-
embed_dim]` if using cls_token
|
89 |
-
"""
|
90 |
-
if output_type == "np":
|
91 |
-
deprecation_message = (
|
92 |
-
"`get_2d_sincos_pos_embed` uses `torch` and supports `device`."
|
93 |
-
" `from_numpy` is no longer required."
|
94 |
-
" Pass `output_type='pt' to use the new version now."
|
95 |
-
)
|
96 |
-
deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
|
97 |
-
raise ValueError("Not supported")
|
98 |
-
if isinstance(grid_size, int):
|
99 |
-
grid_size = (grid_size, grid_size)
|
100 |
-
|
101 |
-
grid_h = (
|
102 |
-
torch.arange(grid_size[0], device=device, dtype=torch.float32)
|
103 |
-
/ (grid_size[0] / base_size)
|
104 |
-
/ interpolation_scale
|
105 |
-
)
|
106 |
-
grid_w = (
|
107 |
-
torch.arange(grid_size[1], device=device, dtype=torch.float32)
|
108 |
-
/ (grid_size[1] / base_size)
|
109 |
-
/ interpolation_scale
|
110 |
-
)
|
111 |
-
grid = torch.meshgrid(grid_w, grid_h, indexing="xy") # here w goes first
|
112 |
-
grid = torch.stack(grid, dim=0)
|
113 |
-
|
114 |
-
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
|
115 |
-
pos_embed = pixcell_get_2d_sincos_pos_embed_from_grid(embed_dim, grid, phase=phase, output_type=output_type)
|
116 |
-
if cls_token and extra_tokens > 0:
|
117 |
-
pos_embed = torch.concat([torch.zeros([extra_tokens, embed_dim]), pos_embed], dim=0)
|
118 |
-
return pos_embed
|
119 |
-
|
120 |
-
|
121 |
-
def pixcell_get_2d_sincos_pos_embed_from_grid(embed_dim, grid, phase=0, output_type="np"):
|
122 |
-
r"""
|
123 |
-
This function generates 2D sinusoidal positional embeddings from a grid.
|
124 |
-
|
125 |
-
Args:
|
126 |
-
embed_dim (`int`): The embedding dimension.
|
127 |
-
grid (`torch.Tensor`): Grid of positions with shape `(H * W,)`.
|
128 |
-
|
129 |
-
Returns:
|
130 |
-
`torch.Tensor`: The 2D sinusoidal positional embeddings with shape `(H * W, embed_dim)`
|
131 |
-
"""
|
132 |
-
if output_type == "np":
|
133 |
-
deprecation_message = (
|
134 |
-
"`get_2d_sincos_pos_embed_from_grid` uses `torch` and supports `device`."
|
135 |
-
" `from_numpy` is no longer required."
|
136 |
-
" Pass `output_type='pt' to use the new version now."
|
137 |
-
)
|
138 |
-
deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
|
139 |
-
raise ValueError("Not supported")
|
140 |
-
if embed_dim % 2 != 0:
|
141 |
-
raise ValueError("embed_dim must be divisible by 2")
|
142 |
-
|
143 |
-
# use half of dimensions to encode grid_h
|
144 |
-
emb_h = pixcell_get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0], phase=phase, output_type=output_type) # (H*W, D/2)
|
145 |
-
emb_w = pixcell_get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1], phase=phase, output_type=output_type) # (H*W, D/2)
|
146 |
-
|
147 |
-
emb = torch.concat([emb_h, emb_w], dim=1) # (H*W, D)
|
148 |
-
return emb
|
149 |
-
|
150 |
-
|
151 |
-
def pixcell_get_1d_sincos_pos_embed_from_grid(embed_dim, pos, phase=0, output_type="np"):
|
152 |
-
"""
|
153 |
-
This function generates 1D positional embeddings from a grid.
|
154 |
-
|
155 |
-
Args:
|
156 |
-
embed_dim (`int`): The embedding dimension `D`
|
157 |
-
pos (`torch.Tensor`): 1D tensor of positions with shape `(M,)`
|
158 |
-
|
159 |
-
Returns:
|
160 |
-
`torch.Tensor`: Sinusoidal positional embeddings of shape `(M, D)`.
|
161 |
-
"""
|
162 |
-
if output_type == "np":
|
163 |
-
deprecation_message = (
|
164 |
-
"`get_1d_sincos_pos_embed_from_grid` uses `torch` and supports `device`."
|
165 |
-
" `from_numpy` is no longer required."
|
166 |
-
" Pass `output_type='pt' to use the new version now."
|
167 |
-
)
|
168 |
-
deprecate("output_type=='np'", "0.34.0", deprecation_message, standard_warn=False)
|
169 |
-
raise ValueError("Not supported")
|
170 |
-
if embed_dim % 2 != 0:
|
171 |
-
raise ValueError("embed_dim must be divisible by 2")
|
172 |
-
|
173 |
-
omega = torch.arange(embed_dim // 2, device=pos.device, dtype=torch.float64)
|
174 |
-
omega /= embed_dim / 2.0
|
175 |
-
omega = 1.0 / 10000**omega # (D/2,)
|
176 |
-
|
177 |
-
pos = pos.reshape(-1) + phase # (M,)
|
178 |
-
out = torch.outer(pos, omega) # (M, D/2), outer product
|
179 |
-
|
180 |
-
emb_sin = torch.sin(out) # (M, D/2)
|
181 |
-
emb_cos = torch.cos(out) # (M, D/2)
|
182 |
-
|
183 |
-
emb = torch.concat([emb_sin, emb_cos], dim=1) # (M, D)
|
184 |
-
return emb
|
185 |
-
|
186 |
-
|
187 |
-
class PixcellUNIProjection(nn.Module):
|
188 |
-
"""
|
189 |
-
Projects UNI embeddings. Also handles dropout for classifier-free guidance.
|
190 |
-
|
191 |
-
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
|
192 |
-
"""
|
193 |
-
|
194 |
-
def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh", num_tokens=1):
|
195 |
-
super().__init__()
|
196 |
-
if out_features is None:
|
197 |
-
out_features = hidden_size
|
198 |
-
self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True)
|
199 |
-
if act_fn == "gelu_tanh":
|
200 |
-
self.act_1 = nn.GELU(approximate="tanh")
|
201 |
-
elif act_fn == "silu":
|
202 |
-
self.act_1 = nn.SiLU()
|
203 |
-
elif act_fn == "silu_fp32":
|
204 |
-
self.act_1 = FP32SiLU()
|
205 |
-
else:
|
206 |
-
raise ValueError(f"Unknown activation function: {act_fn}")
|
207 |
-
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=out_features, bias=True)
|
208 |
-
|
209 |
-
self.register_buffer("uncond_embedding", nn.Parameter(torch.randn(num_tokens, in_features) / in_features ** 0.5))
|
210 |
-
|
211 |
-
def forward(self, caption):
|
212 |
-
hidden_states = self.linear_1(caption)
|
213 |
-
hidden_states = self.act_1(hidden_states)
|
214 |
-
hidden_states = self.linear_2(hidden_states)
|
215 |
-
return hidden_states
|
216 |
-
|
217 |
-
class UNIPosEmbed(nn.Module):
|
218 |
-
"""
|
219 |
-
Adds positional embeddings to the UNI conditions.
|
220 |
-
|
221 |
-
Args:
|
222 |
-
height (`int`, defaults to `224`): The height of the image.
|
223 |
-
width (`int`, defaults to `224`): The width of the image.
|
224 |
-
patch_size (`int`, defaults to `16`): The size of the patches.
|
225 |
-
in_channels (`int`, defaults to `3`): The number of input channels.
|
226 |
-
embed_dim (`int`, defaults to `768`): The output dimension of the embedding.
|
227 |
-
layer_norm (`bool`, defaults to `False`): Whether or not to use layer normalization.
|
228 |
-
flatten (`bool`, defaults to `True`): Whether or not to flatten the output.
|
229 |
-
bias (`bool`, defaults to `True`): Whether or not to use bias.
|
230 |
-
interpolation_scale (`float`, defaults to `1`): The scale of the interpolation.
|
231 |
-
pos_embed_type (`str`, defaults to `"sincos"`): The type of positional embedding.
|
232 |
-
pos_embed_max_size (`int`, defaults to `None`): The maximum size of the positional embedding.
|
233 |
-
"""
|
234 |
-
|
235 |
-
def __init__(
|
236 |
-
self,
|
237 |
-
height=1,
|
238 |
-
width=1,
|
239 |
-
base_size=16,
|
240 |
-
embed_dim=768,
|
241 |
-
interpolation_scale=1,
|
242 |
-
pos_embed_type="sincos",
|
243 |
-
):
|
244 |
-
super().__init__()
|
245 |
-
|
246 |
-
num_embeds = height*width
|
247 |
-
grid_size = int(num_embeds ** 0.5)
|
248 |
-
|
249 |
-
if pos_embed_type == "sincos":
|
250 |
-
y_pos_embed = pixcell_get_2d_sincos_pos_embed(
|
251 |
-
embed_dim,
|
252 |
-
grid_size,
|
253 |
-
base_size=base_size,
|
254 |
-
interpolation_scale=interpolation_scale,
|
255 |
-
output_type="pt",
|
256 |
-
phase = base_size // num_embeds
|
257 |
-
)
|
258 |
-
self.register_buffer("y_pos_embed", y_pos_embed.float().unsqueeze(0))
|
259 |
-
else:
|
260 |
-
raise ValueError("`pos_embed_type` not supported")
|
261 |
-
|
262 |
-
def forward(self, uni_embeds):
|
263 |
-
return (uni_embeds + self.y_pos_embed).to(uni_embeds.dtype)
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
268 |
-
|
269 |
-
|
270 |
-
class PixCellTransformer2DModel(ModelMixin, ConfigMixin):
|
271 |
-
r"""
|
272 |
-
A 2D Transformer model as introduced in PixArt family of models (https://arxiv.org/abs/2310.00426,
|
273 |
-
https://arxiv.org/abs/2403.04692). Modified for the pathology domain.
|
274 |
-
|
275 |
-
Parameters:
|
276 |
-
num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention.
|
277 |
-
attention_head_dim (int, optional, defaults to 72): The number of channels in each head.
|
278 |
-
in_channels (int, defaults to 4): The number of channels in the input.
|
279 |
-
out_channels (int, optional):
|
280 |
-
The number of channels in the output. Specify this parameter if the output channel number differs from the
|
281 |
-
input.
|
282 |
-
num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use.
|
283 |
-
dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks.
|
284 |
-
norm_num_groups (int, optional, defaults to 32):
|
285 |
-
Number of groups for group normalization within Transformer blocks.
|
286 |
-
cross_attention_dim (int, optional):
|
287 |
-
The dimensionality for cross-attention layers, typically matching the encoder's hidden dimension.
|
288 |
-
attention_bias (bool, optional, defaults to True):
|
289 |
-
Configure if the Transformer blocks' attention should contain a bias parameter.
|
290 |
-
sample_size (int, defaults to 128):
|
291 |
-
The width of the latent images. This parameter is fixed during training.
|
292 |
-
patch_size (int, defaults to 2):
|
293 |
-
Size of the patches the model processes, relevant for architectures working on non-sequential data.
|
294 |
-
activation_fn (str, optional, defaults to "gelu-approximate"):
|
295 |
-
Activation function to use in feed-forward networks within Transformer blocks.
|
296 |
-
num_embeds_ada_norm (int, optional, defaults to 1000):
|
297 |
-
Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during
|
298 |
-
inference.
|
299 |
-
upcast_attention (bool, optional, defaults to False):
|
300 |
-
If true, upcasts the attention mechanism dimensions for potentially improved performance.
|
301 |
-
norm_type (str, optional, defaults to "ada_norm_zero"):
|
302 |
-
Specifies the type of normalization used, can be 'ada_norm_zero'.
|
303 |
-
norm_elementwise_affine (bool, optional, defaults to False):
|
304 |
-
If true, enables element-wise affine parameters in the normalization layers.
|
305 |
-
norm_eps (float, optional, defaults to 1e-6):
|
306 |
-
A small constant added to the denominator in normalization layers to prevent division by zero.
|
307 |
-
interpolation_scale (int, optional): Scale factor to use during interpolating the position embeddings.
|
308 |
-
use_additional_conditions (bool, optional): If we're using additional conditions as inputs.
|
309 |
-
attention_type (str, optional, defaults to "default"): Kind of attention mechanism to be used.
|
310 |
-
caption_channels (int, optional, defaults to None):
|
311 |
-
Number of channels to use for projecting the caption embeddings.
|
312 |
-
use_linear_projection (bool, optional, defaults to False):
|
313 |
-
Deprecated argument. Will be removed in a future version.
|
314 |
-
num_vector_embeds (bool, optional, defaults to False):
|
315 |
-
Deprecated argument. Will be removed in a future version.
|
316 |
-
"""
|
317 |
-
|
318 |
-
_supports_gradient_checkpointing = True
|
319 |
-
_no_split_modules = ["BasicTransformerBlock", "PatchEmbed"]
|
320 |
-
|
321 |
-
@register_to_config
|
322 |
-
def __init__(
|
323 |
-
self,
|
324 |
-
num_attention_heads: int = 16,
|
325 |
-
attention_head_dim: int = 72,
|
326 |
-
in_channels: int = 4,
|
327 |
-
out_channels: Optional[int] = 8,
|
328 |
-
num_layers: int = 28,
|
329 |
-
dropout: float = 0.0,
|
330 |
-
norm_num_groups: int = 32,
|
331 |
-
cross_attention_dim: Optional[int] = 1152,
|
332 |
-
attention_bias: bool = True,
|
333 |
-
sample_size: int = 128,
|
334 |
-
patch_size: int = 2,
|
335 |
-
activation_fn: str = "gelu-approximate",
|
336 |
-
num_embeds_ada_norm: Optional[int] = 1000,
|
337 |
-
upcast_attention: bool = False,
|
338 |
-
norm_type: str = "ada_norm_single",
|
339 |
-
norm_elementwise_affine: bool = False,
|
340 |
-
norm_eps: float = 1e-6,
|
341 |
-
interpolation_scale: Optional[int] = None,
|
342 |
-
use_additional_conditions: Optional[bool] = None,
|
343 |
-
caption_channels: Optional[int] = None,
|
344 |
-
caption_num_tokens: int = 1,
|
345 |
-
attention_type: Optional[str] = "default",
|
346 |
-
):
|
347 |
-
super().__init__()
|
348 |
-
|
349 |
-
# Validate inputs.
|
350 |
-
if norm_type != "ada_norm_single":
|
351 |
-
raise NotImplementedError(
|
352 |
-
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
|
353 |
-
)
|
354 |
-
elif norm_type == "ada_norm_single" and num_embeds_ada_norm is None:
|
355 |
-
raise ValueError(
|
356 |
-
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
|
357 |
-
)
|
358 |
-
|
359 |
-
# Set some common variables used across the board.
|
360 |
-
self.attention_head_dim = attention_head_dim
|
361 |
-
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
362 |
-
self.out_channels = in_channels if out_channels is None else out_channels
|
363 |
-
if use_additional_conditions is None:
|
364 |
-
if sample_size == 128:
|
365 |
-
use_additional_conditions = True
|
366 |
-
else:
|
367 |
-
use_additional_conditions = False
|
368 |
-
self.use_additional_conditions = use_additional_conditions
|
369 |
-
|
370 |
-
self.gradient_checkpointing = False
|
371 |
-
|
372 |
-
# 2. Initialize the position embedding and transformer blocks.
|
373 |
-
self.height = self.config.sample_size
|
374 |
-
self.width = self.config.sample_size
|
375 |
-
|
376 |
-
interpolation_scale = (
|
377 |
-
self.config.interpolation_scale
|
378 |
-
if self.config.interpolation_scale is not None
|
379 |
-
else max(self.config.sample_size // 64, 1)
|
380 |
-
)
|
381 |
-
self.pos_embed = PatchEmbed(
|
382 |
-
height=self.config.sample_size,
|
383 |
-
width=self.config.sample_size,
|
384 |
-
patch_size=self.config.patch_size,
|
385 |
-
in_channels=self.config.in_channels,
|
386 |
-
embed_dim=self.inner_dim,
|
387 |
-
interpolation_scale=interpolation_scale,
|
388 |
-
)
|
389 |
-
|
390 |
-
self.transformer_blocks = nn.ModuleList(
|
391 |
-
[
|
392 |
-
BasicTransformerBlock(
|
393 |
-
self.inner_dim,
|
394 |
-
self.config.num_attention_heads,
|
395 |
-
self.config.attention_head_dim,
|
396 |
-
dropout=self.config.dropout,
|
397 |
-
cross_attention_dim=self.config.cross_attention_dim,
|
398 |
-
activation_fn=self.config.activation_fn,
|
399 |
-
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
|
400 |
-
attention_bias=self.config.attention_bias,
|
401 |
-
upcast_attention=self.config.upcast_attention,
|
402 |
-
norm_type=norm_type,
|
403 |
-
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
404 |
-
norm_eps=self.config.norm_eps,
|
405 |
-
attention_type=self.config.attention_type,
|
406 |
-
)
|
407 |
-
for _ in range(self.config.num_layers)
|
408 |
-
]
|
409 |
-
)
|
410 |
-
|
411 |
-
# Initialize the positional embedding for the conditions for >1 UNI embeddings
|
412 |
-
if self.config.caption_num_tokens == 1:
|
413 |
-
self.y_pos_embed = None
|
414 |
-
else:
|
415 |
-
# 1:1 aspect ratio
|
416 |
-
self.uni_height = int(self.config.caption_num_tokens ** 0.5)
|
417 |
-
self.uni_width = int(self.config.caption_num_tokens ** 0.5)
|
418 |
-
|
419 |
-
self.y_pos_embed = UNIPosEmbed(
|
420 |
-
height=self.uni_height,
|
421 |
-
width=self.uni_width,
|
422 |
-
base_size=self.config.sample_size // self.config.patch_size,
|
423 |
-
embed_dim=self.config.caption_channels,
|
424 |
-
interpolation_scale=2, # Should this be fixed?
|
425 |
-
pos_embed_type="sincos", # This is fixed
|
426 |
-
)
|
427 |
-
|
428 |
-
# 3. Output blocks.
|
429 |
-
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
430 |
-
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
|
431 |
-
self.proj_out = nn.Linear(self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels)
|
432 |
-
|
433 |
-
self.adaln_single = AdaLayerNormSingle(
|
434 |
-
self.inner_dim, use_additional_conditions=self.use_additional_conditions
|
435 |
-
)
|
436 |
-
self.caption_projection = None
|
437 |
-
if self.config.caption_channels is not None:
|
438 |
-
self.caption_projection = PixcellUNIProjection(
|
439 |
-
in_features=self.config.caption_channels, hidden_size=self.inner_dim, num_tokens=self.config.caption_num_tokens,
|
440 |
-
)
|
441 |
-
|
442 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
443 |
-
if hasattr(module, "gradient_checkpointing"):
|
444 |
-
module.gradient_checkpointing = value
|
445 |
-
|
446 |
-
@property
|
447 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
448 |
-
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
449 |
-
r"""
|
450 |
-
Returns:
|
451 |
-
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
452 |
-
indexed by its weight name.
|
453 |
-
"""
|
454 |
-
# set recursively
|
455 |
-
processors = {}
|
456 |
-
|
457 |
-
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
458 |
-
if hasattr(module, "get_processor"):
|
459 |
-
processors[f"{name}.processor"] = module.get_processor()
|
460 |
-
|
461 |
-
for sub_name, child in module.named_children():
|
462 |
-
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
463 |
-
|
464 |
-
return processors
|
465 |
-
|
466 |
-
for name, module in self.named_children():
|
467 |
-
fn_recursive_add_processors(name, module, processors)
|
468 |
-
|
469 |
-
return processors
|
470 |
-
|
471 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
472 |
-
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
473 |
-
r"""
|
474 |
-
Sets the attention processor to use to compute attention.
|
475 |
-
|
476 |
-
Parameters:
|
477 |
-
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
478 |
-
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
479 |
-
for **all** `Attention` layers.
|
480 |
-
|
481 |
-
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
482 |
-
processor. This is strongly recommended when setting trainable attention processors.
|
483 |
-
|
484 |
-
"""
|
485 |
-
count = len(self.attn_processors.keys())
|
486 |
-
|
487 |
-
if isinstance(processor, dict) and len(processor) != count:
|
488 |
-
raise ValueError(
|
489 |
-
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
490 |
-
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
491 |
-
)
|
492 |
-
|
493 |
-
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
494 |
-
if hasattr(module, "set_processor"):
|
495 |
-
if not isinstance(processor, dict):
|
496 |
-
module.set_processor(processor)
|
497 |
-
else:
|
498 |
-
module.set_processor(processor.pop(f"{name}.processor"))
|
499 |
-
|
500 |
-
for sub_name, child in module.named_children():
|
501 |
-
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
502 |
-
|
503 |
-
for name, module in self.named_children():
|
504 |
-
fn_recursive_attn_processor(name, module, processor)
|
505 |
-
|
506 |
-
def set_default_attn_processor(self):
|
507 |
-
"""
|
508 |
-
Disables custom attention processors and sets the default attention implementation.
|
509 |
-
|
510 |
-
Safe to just use `AttnProcessor()` as PixArt doesn't have any exotic attention processors in default model.
|
511 |
-
"""
|
512 |
-
self.set_attn_processor(AttnProcessor())
|
513 |
-
|
514 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
|
515 |
-
def fuse_qkv_projections(self):
|
516 |
-
"""
|
517 |
-
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
518 |
-
are fused. For cross-attention modules, key and value projection matrices are fused.
|
519 |
-
|
520 |
-
<Tip warning={true}>
|
521 |
-
|
522 |
-
This API is 🧪 experimental.
|
523 |
-
|
524 |
-
</Tip>
|
525 |
-
"""
|
526 |
-
self.original_attn_processors = None
|
527 |
-
|
528 |
-
for _, attn_processor in self.attn_processors.items():
|
529 |
-
if "Added" in str(attn_processor.__class__.__name__):
|
530 |
-
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
531 |
-
|
532 |
-
self.original_attn_processors = self.attn_processors
|
533 |
-
|
534 |
-
for module in self.modules():
|
535 |
-
if isinstance(module, Attention):
|
536 |
-
module.fuse_projections(fuse=True)
|
537 |
-
|
538 |
-
self.set_attn_processor(FusedAttnProcessor2_0())
|
539 |
-
|
540 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
541 |
-
def unfuse_qkv_projections(self):
|
542 |
-
"""Disables the fused QKV projection if enabled.
|
543 |
-
|
544 |
-
<Tip warning={true}>
|
545 |
-
|
546 |
-
This API is 🧪 experimental.
|
547 |
-
|
548 |
-
</Tip>
|
549 |
-
|
550 |
-
"""
|
551 |
-
if self.original_attn_processors is not None:
|
552 |
-
self.set_attn_processor(self.original_attn_processors)
|
553 |
-
|
554 |
-
def forward(
|
555 |
-
self,
|
556 |
-
hidden_states: torch.Tensor,
|
557 |
-
encoder_hidden_states: Optional[torch.Tensor] = None,
|
558 |
-
timestep: Optional[torch.LongTensor] = None,
|
559 |
-
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
560 |
-
cross_attention_kwargs: Dict[str, Any] = None,
|
561 |
-
attention_mask: Optional[torch.Tensor] = None,
|
562 |
-
encoder_attention_mask: Optional[torch.Tensor] = None,
|
563 |
-
return_dict: bool = True,
|
564 |
-
):
|
565 |
-
"""
|
566 |
-
The [`PixCellTransformer2DModel`] forward method.
|
567 |
-
|
568 |
-
Args:
|
569 |
-
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
570 |
-
Input `hidden_states`.
|
571 |
-
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
572 |
-
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
573 |
-
self-attention.
|
574 |
-
timestep (`torch.LongTensor`, *optional*):
|
575 |
-
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
576 |
-
added_cond_kwargs: (`Dict[str, Any]`, *optional*): Additional conditions to be used as inputs.
|
577 |
-
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
578 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
579 |
-
`self.processor` in
|
580 |
-
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
581 |
-
attention_mask ( `torch.Tensor`, *optional*):
|
582 |
-
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
583 |
-
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
584 |
-
negative values to the attention scores corresponding to "discard" tokens.
|
585 |
-
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
586 |
-
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
587 |
-
|
588 |
-
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
589 |
-
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
590 |
-
|
591 |
-
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
592 |
-
above. This bias will be added to the cross-attention scores.
|
593 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
594 |
-
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
595 |
-
tuple.
|
596 |
-
|
597 |
-
Returns:
|
598 |
-
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
599 |
-
`tuple` where the first element is the sample tensor.
|
600 |
-
"""
|
601 |
-
if self.use_additional_conditions and added_cond_kwargs is None:
|
602 |
-
raise ValueError("`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`.")
|
603 |
-
|
604 |
-
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
605 |
-
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
606 |
-
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
607 |
-
# expects mask of shape:
|
608 |
-
# [batch, key_tokens]
|
609 |
-
# adds singleton query_tokens dimension:
|
610 |
-
# [batch, 1, key_tokens]
|
611 |
-
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
612 |
-
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
613 |
-
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
614 |
-
if attention_mask is not None and attention_mask.ndim == 2:
|
615 |
-
# assume that mask is expressed as:
|
616 |
-
# (1 = keep, 0 = discard)
|
617 |
-
# convert mask into a bias that can be added to attention scores:
|
618 |
-
# (keep = +0, discard = -10000.0)
|
619 |
-
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
620 |
-
attention_mask = attention_mask.unsqueeze(1)
|
621 |
-
|
622 |
-
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
623 |
-
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
624 |
-
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
625 |
-
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
626 |
-
|
627 |
-
# 1. Input
|
628 |
-
batch_size = hidden_states.shape[0]
|
629 |
-
height, width = (
|
630 |
-
hidden_states.shape[-2] // self.config.patch_size,
|
631 |
-
hidden_states.shape[-1] // self.config.patch_size,
|
632 |
-
)
|
633 |
-
hidden_states = self.pos_embed(hidden_states)
|
634 |
-
|
635 |
-
timestep, embedded_timestep = self.adaln_single(
|
636 |
-
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
637 |
-
)
|
638 |
-
|
639 |
-
if self.caption_projection is not None:
|
640 |
-
# Add positional embeddings to conditions if >1 UNI are given
|
641 |
-
if self.y_pos_embed is not None:
|
642 |
-
encoder_hidden_states = self.y_pos_embed(encoder_hidden_states)
|
643 |
-
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
644 |
-
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
645 |
-
|
646 |
-
# 2. Blocks
|
647 |
-
for block in self.transformer_blocks:
|
648 |
-
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
649 |
-
|
650 |
-
def create_custom_forward(module, return_dict=None):
|
651 |
-
def custom_forward(*inputs):
|
652 |
-
if return_dict is not None:
|
653 |
-
return module(*inputs, return_dict=return_dict)
|
654 |
-
else:
|
655 |
-
return module(*inputs)
|
656 |
-
|
657 |
-
return custom_forward
|
658 |
-
|
659 |
-
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
660 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
661 |
-
create_custom_forward(block),
|
662 |
-
hidden_states,
|
663 |
-
attention_mask,
|
664 |
-
encoder_hidden_states,
|
665 |
-
encoder_attention_mask,
|
666 |
-
timestep,
|
667 |
-
cross_attention_kwargs,
|
668 |
-
None,
|
669 |
-
**ckpt_kwargs,
|
670 |
-
)
|
671 |
-
else:
|
672 |
-
hidden_states = block(
|
673 |
-
hidden_states,
|
674 |
-
attention_mask=attention_mask,
|
675 |
-
encoder_hidden_states=encoder_hidden_states,
|
676 |
-
encoder_attention_mask=encoder_attention_mask,
|
677 |
-
timestep=timestep,
|
678 |
-
cross_attention_kwargs=cross_attention_kwargs,
|
679 |
-
class_labels=None,
|
680 |
-
)
|
681 |
-
|
682 |
-
# 3. Output
|
683 |
-
shift, scale = (
|
684 |
-
self.scale_shift_table[None] + embedded_timestep[:, None].to(self.scale_shift_table.device)
|
685 |
-
).chunk(2, dim=1)
|
686 |
-
hidden_states = self.norm_out(hidden_states)
|
687 |
-
# Modulation
|
688 |
-
hidden_states = hidden_states * (1 + scale.to(hidden_states.device)) + shift.to(hidden_states.device)
|
689 |
-
hidden_states = self.proj_out(hidden_states)
|
690 |
-
hidden_states = hidden_states.squeeze(1)
|
691 |
-
|
692 |
-
# unpatchify
|
693 |
-
hidden_states = hidden_states.reshape(
|
694 |
-
shape=(-1, height, width, self.config.patch_size, self.config.patch_size, self.out_channels)
|
695 |
-
)
|
696 |
-
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
697 |
-
output = hidden_states.reshape(
|
698 |
-
shape=(-1, self.out_channels, height * self.config.patch_size, width * self.config.patch_size)
|
699 |
-
)
|
700 |
-
|
701 |
-
if not return_dict:
|
702 |
-
return (output,)
|
703 |
-
|
704 |
-
return Transformer2DModelOutput(sample=output)
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
710 |
-
|
711 |
-
|
712 |
-
EXAMPLE_DOC_STRING = """
|
713 |
-
Examples:
|
714 |
-
```py
|
715 |
-
>>> import torch
|
716 |
-
>>> from diffusers import PixCellSigmaPipeline
|
717 |
-
|
718 |
-
>>> # You can replace the checkpoint id with "PixArt-alpha/PixArt-Sigma-XL-2-512-MS" too.
|
719 |
-
>>> pipe = PixArtSigmaPipeline.from_pretrained(
|
720 |
-
... "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", torch_dtype=torch.float16
|
721 |
-
... )
|
722 |
-
>>> # Enable memory optimizations.
|
723 |
-
>>> # pipe.enable_model_cpu_offload()
|
724 |
-
|
725 |
-
>>> prompt = "A small cactus with a happy face in the Sahara desert."
|
726 |
-
>>> image = pipe(prompt).images[0]
|
727 |
-
```
|
728 |
-
"""
|
729 |
-
|
730 |
-
|
731 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
732 |
-
def retrieve_timesteps(
|
733 |
-
scheduler,
|
734 |
-
num_inference_steps: Optional[int] = None,
|
735 |
-
device: Optional[Union[str, torch.device]] = None,
|
736 |
-
timesteps: Optional[List[int]] = None,
|
737 |
-
sigmas: Optional[List[float]] = None,
|
738 |
-
**kwargs,
|
739 |
-
):
|
740 |
-
r"""
|
741 |
-
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
742 |
-
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
743 |
-
|
744 |
-
Args:
|
745 |
-
scheduler (`SchedulerMixin`):
|
746 |
-
The scheduler to get timesteps from.
|
747 |
-
num_inference_steps (`int`):
|
748 |
-
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
749 |
-
must be `None`.
|
750 |
-
device (`str` or `torch.device`, *optional*):
|
751 |
-
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
752 |
-
timesteps (`List[int]`, *optional*):
|
753 |
-
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
754 |
-
`num_inference_steps` and `sigmas` must be `None`.
|
755 |
-
sigmas (`List[float]`, *optional*):
|
756 |
-
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
757 |
-
`num_inference_steps` and `timesteps` must be `None`.
|
758 |
-
|
759 |
-
Returns:
|
760 |
-
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
761 |
-
second element is the number of inference steps.
|
762 |
-
"""
|
763 |
-
if timesteps is not None and sigmas is not None:
|
764 |
-
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
765 |
-
if timesteps is not None:
|
766 |
-
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
767 |
-
if not accepts_timesteps:
|
768 |
-
raise ValueError(
|
769 |
-
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
770 |
-
f" timestep schedules. Please check whether you are using the correct scheduler."
|
771 |
-
)
|
772 |
-
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
773 |
-
timesteps = scheduler.timesteps
|
774 |
-
num_inference_steps = len(timesteps)
|
775 |
-
elif sigmas is not None:
|
776 |
-
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
777 |
-
if not accept_sigmas:
|
778 |
-
raise ValueError(
|
779 |
-
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
780 |
-
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
781 |
-
)
|
782 |
-
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
783 |
-
timesteps = scheduler.timesteps
|
784 |
-
num_inference_steps = len(timesteps)
|
785 |
-
else:
|
786 |
-
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
787 |
-
timesteps = scheduler.timesteps
|
788 |
-
return timesteps, num_inference_steps
|
789 |
-
|
790 |
-
|
791 |
-
class PixCellPipeline(DiffusionPipeline):
|
792 |
-
r"""
|
793 |
-
Pipeline for SSL-to-image generation using PixCell.
|
794 |
-
"""
|
795 |
-
|
796 |
-
model_cpu_offload_seq = "transformer->vae"
|
797 |
-
|
798 |
-
def __init__(
|
799 |
-
self,
|
800 |
-
vae: AutoencoderKL,
|
801 |
-
transformer: PixCellTransformer2DModel,
|
802 |
-
scheduler: DPMSolverMultistepScheduler,
|
803 |
-
):
|
804 |
-
super().__init__()
|
805 |
-
|
806 |
-
self.register_modules(
|
807 |
-
vae=vae, transformer=transformer, scheduler=scheduler
|
808 |
-
)
|
809 |
-
|
810 |
-
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
811 |
-
self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
812 |
-
|
813 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
814 |
-
def prepare_extra_step_kwargs(self, generator, eta):
|
815 |
-
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
816 |
-
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
817 |
-
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
818 |
-
# and should be between [0, 1]
|
819 |
-
|
820 |
-
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
821 |
-
extra_step_kwargs = {}
|
822 |
-
if accepts_eta:
|
823 |
-
extra_step_kwargs["eta"] = eta
|
824 |
-
|
825 |
-
# check if the scheduler accepts generator
|
826 |
-
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
827 |
-
if accepts_generator:
|
828 |
-
extra_step_kwargs["generator"] = generator
|
829 |
-
return extra_step_kwargs
|
830 |
-
|
831 |
-
def get_unconditional_embedding(self, batch_size=1):
|
832 |
-
# Unconditional embedding is learned
|
833 |
-
uncond = self.transformer.caption_projection.uncond_embedding.clone().tile(batch_size,1,1)
|
834 |
-
return uncond
|
835 |
-
|
836 |
-
# Copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.PixArtAlphaPipeline.check_inputs
|
837 |
-
def check_inputs(
|
838 |
-
self,
|
839 |
-
height,
|
840 |
-
width,
|
841 |
-
callback_steps,
|
842 |
-
uni_embeds=None,
|
843 |
-
negative_uni_embeds=None,
|
844 |
-
guidance_scale=None,
|
845 |
-
):
|
846 |
-
if height % 8 != 0 or width % 8 != 0:
|
847 |
-
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
848 |
-
|
849 |
-
if (callback_steps is None) or (
|
850 |
-
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
851 |
-
):
|
852 |
-
raise ValueError(
|
853 |
-
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
854 |
-
f" {type(callback_steps)}."
|
855 |
-
)
|
856 |
-
|
857 |
-
if uni_embeds is None:
|
858 |
-
raise ValueError(
|
859 |
-
"Provide a UNI embedding `uni_embeds`."
|
860 |
-
)
|
861 |
-
elif len(uni_embeds.shape) != 3:
|
862 |
-
raise ValueError(
|
863 |
-
"UNI embedding given is not in (B,N,D)."
|
864 |
-
)
|
865 |
-
elif uni_embeds.shape[1] != self.transformer.config.caption_num_tokens:
|
866 |
-
raise ValueError(
|
867 |
-
f"Number of UNI embeddings must match the ones used in training ({self.transformer.config.caption_num_tokens})."
|
868 |
-
)
|
869 |
-
elif uni_embeds.shape[2] != self.transformer.config.caption_channels:
|
870 |
-
raise ValueError(
|
871 |
-
"UNI embedding given has incorrect dimenions."
|
872 |
-
)
|
873 |
-
|
874 |
-
if guidance_scale > 1.0:
|
875 |
-
if negative_uni_embeds is None:
|
876 |
-
raise ValueError(
|
877 |
-
"Provide a negative UNI embedding `negative_uni_embeds`."
|
878 |
-
)
|
879 |
-
elif len(negative_uni_embeds.shape) != 3:
|
880 |
-
raise ValueError(
|
881 |
-
"Negative UNI embedding given is not in (B,N,D)."
|
882 |
-
)
|
883 |
-
elif negative_uni_embeds.shape[1] != self.transformer.config.caption_num_tokens:
|
884 |
-
raise ValueError(
|
885 |
-
f"Number of negative UNI embeddings must match the ones used in training ({self.transformer.config.caption_num_tokens})."
|
886 |
-
)
|
887 |
-
elif negative_uni_embeds.shape[2] != self.transformer.config.caption_channels:
|
888 |
-
raise ValueError(
|
889 |
-
"Negative UNI embedding given has incorrect dimenions."
|
890 |
-
)
|
891 |
-
|
892 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
893 |
-
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
894 |
-
shape = (
|
895 |
-
batch_size,
|
896 |
-
num_channels_latents,
|
897 |
-
int(height) // self.vae_scale_factor,
|
898 |
-
int(width) // self.vae_scale_factor,
|
899 |
-
)
|
900 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
901 |
-
raise ValueError(
|
902 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
903 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
904 |
-
)
|
905 |
-
|
906 |
-
if latents is None:
|
907 |
-
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
908 |
-
else:
|
909 |
-
latents = latents.to(device)
|
910 |
-
|
911 |
-
# scale the initial noise by the standard deviation required by the scheduler
|
912 |
-
latents = latents * self.scheduler.init_noise_sigma
|
913 |
-
return latents
|
914 |
-
|
915 |
-
@torch.no_grad()
|
916 |
-
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
917 |
-
def __call__(
|
918 |
-
self,
|
919 |
-
num_inference_steps: int = 20,
|
920 |
-
timesteps: List[int] = None,
|
921 |
-
sigmas: List[float] = None,
|
922 |
-
guidance_scale: float = 1.5,
|
923 |
-
num_images_per_prompt: Optional[int] = 1,
|
924 |
-
height: Optional[int] = None,
|
925 |
-
width: Optional[int] = None,
|
926 |
-
eta: float = 0.0,
|
927 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
928 |
-
latents: Optional[torch.Tensor] = None,
|
929 |
-
uni_embeds: Optional[torch.Tensor] = None,
|
930 |
-
negative_uni_embeds: Optional[torch.Tensor] = None,
|
931 |
-
output_type: Optional[str] = "pil",
|
932 |
-
return_dict: bool = True,
|
933 |
-
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
934 |
-
callback_steps: int = 1,
|
935 |
-
**kwargs,
|
936 |
-
) -> Union[ImagePipelineOutput, Tuple]:
|
937 |
-
"""
|
938 |
-
Function invoked when calling the pipeline for generation.
|
939 |
-
|
940 |
-
Args:
|
941 |
-
num_inference_steps (`int`, *optional*, defaults to 100):
|
942 |
-
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
943 |
-
expense of slower inference.
|
944 |
-
timesteps (`List[int]`, *optional*):
|
945 |
-
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
946 |
-
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
947 |
-
passed will be used. Must be in descending order.
|
948 |
-
sigmas (`List[float]`, *optional*):
|
949 |
-
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
950 |
-
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
951 |
-
will be used.
|
952 |
-
guidance_scale (`float`, *optional*, defaults to 4.5):
|
953 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
954 |
-
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
955 |
-
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
956 |
-
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
957 |
-
usually at the expense of lower image quality.
|
958 |
-
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
959 |
-
The number of images to generate per prompt.
|
960 |
-
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
961 |
-
The height in pixels of the generated image.
|
962 |
-
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
963 |
-
The width in pixels of the generated image.
|
964 |
-
eta (`float`, *optional*, defaults to 0.0):
|
965 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
966 |
-
[`schedulers.DDIMScheduler`], will be ignored for others.
|
967 |
-
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
968 |
-
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
969 |
-
to make generation deterministic.
|
970 |
-
latents (`torch.Tensor`, *optional*):
|
971 |
-
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
972 |
-
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
973 |
-
tensor will ge generated by sampling using the supplied random `generator`.
|
974 |
-
uni_embeds (`torch.Tensor`, *optional*):
|
975 |
-
Pre-generated UNI embeddings.
|
976 |
-
negative_uni_embeds (`torch.Tensor`, *optional*):
|
977 |
-
Pre-generated negative UNI embeddings.
|
978 |
-
output_type (`str`, *optional*, defaults to `"pil"`):
|
979 |
-
The output format of the generate image. Choose between
|
980 |
-
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
981 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
982 |
-
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
983 |
-
callback (`Callable`, *optional*):
|
984 |
-
A function that will be called every `callback_steps` steps during inference. The function will be
|
985 |
-
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
986 |
-
callback_steps (`int`, *optional*, defaults to 1):
|
987 |
-
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
988 |
-
called at every step.
|
989 |
-
|
990 |
-
Examples:
|
991 |
-
|
992 |
-
Returns:
|
993 |
-
[`~pipelines.ImagePipelineOutput`] or `tuple`:
|
994 |
-
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
|
995 |
-
returned where the first element is a list with the generated images
|
996 |
-
"""
|
997 |
-
# 1. Check inputs. Raise error if not correct
|
998 |
-
height = height or self.transformer.config.sample_size * self.vae_scale_factor
|
999 |
-
width = width or self.transformer.config.sample_size * self.vae_scale_factor
|
1000 |
-
|
1001 |
-
self.check_inputs(
|
1002 |
-
height,
|
1003 |
-
width,
|
1004 |
-
callback_steps,
|
1005 |
-
uni_embeds,
|
1006 |
-
negative_uni_embeds,
|
1007 |
-
guidance_scale,
|
1008 |
-
)
|
1009 |
-
|
1010 |
-
# 2. Default height and width to transformer
|
1011 |
-
batch_size = uni_embeds.shape[0]
|
1012 |
-
|
1013 |
-
device = self._execution_device
|
1014 |
-
|
1015 |
-
# 3. Handle UNI conditioning
|
1016 |
-
|
1017 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1018 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1019 |
-
# corresponds to doing no classifier free guidance.
|
1020 |
-
do_classifier_free_guidance = guidance_scale > 1.0
|
1021 |
-
|
1022 |
-
uni_embeds = uni_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
1023 |
-
if do_classifier_free_guidance:
|
1024 |
-
negative_uni_embeds = negative_uni_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
1025 |
-
uni_embeds = torch.cat([negative_uni_embeds, uni_embeds], dim=0)
|
1026 |
-
|
1027 |
-
|
1028 |
-
# 4. Prepare timesteps
|
1029 |
-
timesteps, num_inference_steps = retrieve_timesteps(
|
1030 |
-
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
1031 |
-
)
|
1032 |
-
|
1033 |
-
# 5. Prepare latents.
|
1034 |
-
latent_channels = self.transformer.config.in_channels
|
1035 |
-
latents = self.prepare_latents(
|
1036 |
-
batch_size * num_images_per_prompt,
|
1037 |
-
latent_channels,
|
1038 |
-
height,
|
1039 |
-
width,
|
1040 |
-
uni_embeds.dtype,
|
1041 |
-
device,
|
1042 |
-
generator,
|
1043 |
-
latents,
|
1044 |
-
)
|
1045 |
-
|
1046 |
-
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1047 |
-
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1048 |
-
|
1049 |
-
added_cond_kwargs = {}
|
1050 |
-
|
1051 |
-
# 7. Denoising loop
|
1052 |
-
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1053 |
-
|
1054 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1055 |
-
for i, t in enumerate(timesteps):
|
1056 |
-
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
1057 |
-
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1058 |
-
|
1059 |
-
current_timestep = t
|
1060 |
-
if not torch.is_tensor(current_timestep):
|
1061 |
-
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
1062 |
-
# This would be a good case for the `match` statement (Python 3.10+)
|
1063 |
-
is_mps = latent_model_input.device.type == "mps"
|
1064 |
-
if isinstance(current_timestep, float):
|
1065 |
-
dtype = torch.float32 if is_mps else torch.float64
|
1066 |
-
else:
|
1067 |
-
dtype = torch.int32 if is_mps else torch.int64
|
1068 |
-
current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device)
|
1069 |
-
elif len(current_timestep.shape) == 0:
|
1070 |
-
current_timestep = current_timestep[None].to(latent_model_input.device)
|
1071 |
-
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
1072 |
-
current_timestep = current_timestep.expand(latent_model_input.shape[0])
|
1073 |
-
|
1074 |
-
# predict noise model_output
|
1075 |
-
noise_pred = self.transformer(
|
1076 |
-
latent_model_input,
|
1077 |
-
encoder_hidden_states=uni_embeds,
|
1078 |
-
timestep=current_timestep,
|
1079 |
-
added_cond_kwargs=added_cond_kwargs,
|
1080 |
-
return_dict=False,
|
1081 |
-
)[0]
|
1082 |
-
|
1083 |
-
# perform guidance
|
1084 |
-
if do_classifier_free_guidance:
|
1085 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1086 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1087 |
-
|
1088 |
-
# learned sigma
|
1089 |
-
if self.transformer.config.out_channels // 2 == latent_channels:
|
1090 |
-
noise_pred = noise_pred.chunk(2, dim=1)[0]
|
1091 |
-
else:
|
1092 |
-
noise_pred = noise_pred
|
1093 |
-
|
1094 |
-
# compute previous image: x_t -> x_t-1
|
1095 |
-
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1096 |
-
|
1097 |
-
# call the callback, if provided
|
1098 |
-
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1099 |
-
progress_bar.update()
|
1100 |
-
if callback is not None and i % callback_steps == 0:
|
1101 |
-
step_idx = i // getattr(self.scheduler, "order", 1)
|
1102 |
-
callback(step_idx, t, latents)
|
1103 |
-
|
1104 |
-
if not output_type == "latent":
|
1105 |
-
vae_scale = self.vae.config.scaling_factor
|
1106 |
-
vae_shift = getattr(self.vae.config, "shift_factor", 0)
|
1107 |
-
|
1108 |
-
image = self.vae.decode((latents / vae_scale) + vae_shift, return_dict=False)[0]
|
1109 |
-
|
1110 |
-
else:
|
1111 |
-
image = latents
|
1112 |
-
|
1113 |
-
if not output_type == "latent":
|
1114 |
-
image = self.image_processor.postprocess(image, output_type=output_type)
|
1115 |
-
|
1116 |
-
# Offload all models
|
1117 |
-
self.maybe_free_model_hooks()
|
1118 |
-
|
1119 |
-
if not return_dict:
|
1120 |
-
return (image,)
|
1121 |
-
|
1122 |
-
return ImagePipelineOutput(images=image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|