Create handler.py
Browse files- handler.py +31 -0
handler.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
class EndpointHandler():
|
6 |
+
def __init__(self, path=""):
|
7 |
+
disable_torch_init()
|
8 |
+
device = torch.cuda_device
|
9 |
+
self.processor = LlavaNextProcessor.from_pretrained(path, use_fast=False)
|
10 |
+
self.model = LlavaNextForConditionalGeneration.from_pretrained(
|
11 |
+
path,
|
12 |
+
torch_dtype=torch.float16,
|
13 |
+
low_cpu_mem_usage=True,
|
14 |
+
load_in_4bit=True
|
15 |
+
)
|
16 |
+
self.model.to("cuda:0")
|
17 |
+
|
18 |
+
def __call__(self, data):
|
19 |
+
image_encoded = data.pop("inputs", data)
|
20 |
+
prompt = data["text"]
|
21 |
+
|
22 |
+
image = self.decode_base64_image(image_encoded)
|
23 |
+
if image.mode != "RGB":
|
24 |
+
image = image.convert("RGB")
|
25 |
+
|
26 |
+
inputs = self.processor(prompt, image, return_tensors="pt").to("cuda:0")
|
27 |
+
|
28 |
+
# autoregressively complete prompt
|
29 |
+
output = self.model.generate(**inputs, max_new_tokens=500)
|
30 |
+
|
31 |
+
return processor.decode(output[0], skip_special_tokens=True)
|