File size: 2,138 Bytes
6972901
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e2bb37
 
 
0950e17
02f9475
6e2bb37
 
 
 
 
 
6972901
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
license: "cc-by-nc-4.0"
tags:
- vision
- video-classification
---

# StreamFormer (base-sized model) 

StreamFormer backbone model pre-trained on *Global*-, *Temporal*- and *Spatial*- granularities. It was introduced in the paper [Learning Streaming Video Representation via Multitask Training](https://arxiv.org/abs/2504.20041) and first released in [this repository](https://github.com/Go2Heart/StreamFormer). 

## Intended uses & limitations

StreamFormer is a streaming video representation backbone that encodes a stream of video input. It is designed for multiple downstream applications like Online Action Detection, Online Video Instance Segmentation and Video Question Answering.

### Installation

```bash
git clone https://github.com/Go2Heart/StreamFormer.git
cd StreamFormer
conda create -n streamformer python=3.10
conda activate streamformer
conda install pytorch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 pytorch-cuda=12.4 -c pytorch -c nvidia
pip install -r requirements.txt
```

### How to use

How to get the multi-granularity feature:

```python
from models import TimesformerMultiTaskingModelSigLIP
import torch
model = TimesformerMultiTaskingModelSigLIP.from_pretrained("StreamFormer/streamformer-timesformer").eval()
with torch.no_grad():
    fake_frames = torch.randn(1, 16, 3, 224, 224)
    fake_frames = fake_frames.to(model.device)
    output = model(fake_frames)
    # global representation [B, D]
    print(output.pooler_output[:,-1].shape, output.pooler_output[:,-1])
    
    # temporal representation [B, T, D]
    print(output.pooler_output.shape, output.pooler_output)
    
    # spatial representation [B, T, HxW, D]
    print(output.last_hidden_state.shape, output.last_hidden_state)
```

### BibTeX entry and citation info

```bibtex
@misc{yan2025learning,
        title={Learning Streaming Video Representation via Multitask Training},
        author={Yibin Yan and Jilan Xu and Shangzhe Di and Yikun Liu and Yudi Shi and Qirui Chen and Zeqian Li and Yifei Huang and Weidi Xie},
        year={2025},
        eprint={2504.20041},
        archivePrefix={arXiv},
        primaryClass={cs.CV}
}
```