--- library_name: transformers license: mit base_model: xlnet/xlnet-large-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlnet_xlnet-large-cased results: [] --- # xlnet_xlnet-large-cased This model is a fine-tuned version of [xlnet/xlnet-large-cased](https://huggingface.co/xlnet/xlnet-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4041 - Accuracy: 0.4479 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.419 | 1.0 | 283 | 1.4054 | 0.4479 | | 1.4137 | 2.0 | 566 | 1.3887 | 0.4479 | | 1.4122 | 3.0 | 849 | 1.3666 | 0.4479 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu118 - Datasets 3.4.0 - Tokenizers 0.21.1