File size: 3,462 Bytes
8f4a0e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
---
datasets:
- Sweaterdog/Andy-4-base
- Sweaterdog/Andy-4-ft
- Sweaterdog/Andy-base-2
language:
- en
base_model:
- HuggingFaceTB/SmolLM2-360M-Instruct
tags:
- gaming
- minecraft
- mindcraft
---
# 🧠 Andy‑4-tiny 🐜

**Andy‑4-tiny** is an 360 Million‑parameter specialist model tuned for Minecraft gameplay via the Mindcraft framework.
**The Current version of Andy-4-tiny is** `Andy-4-tiny-0522`.
These are the LoRA files for the model
> ⚠️ **Certification:**
> Andy‑4 is **not yet certified** by the Mindcraft developers. Use in production at your own discretion.
## 🔍 Model Specifications
- **Parameters:** 360M
- **Training Hardware:** 1 × NVIDIA RTX 3070
- **Duration:** ~ 36 hours total
- **Data Volumes:**
- **Messages:** 179,384
- **Tokens:** 425,535,198
- **Conversations:** 62,149
- **Base Architecture:** SmolLM2
- **License:** [Andy 1.0 License](LICENSE)
- **Repository:** https://huggingface.co/Sweaterdog/Andy‑4
---
## 📊 Training Regimen
1. **Andy‑4‑base‑1** dataset
- **Epochs:** 2
- **Learning Rate:** 5e-5
- **Dataset Size:** 47.4k
2. **Andy‑4‑base-2** dataset
- **Epochs:** 2
- **Learning Rate:** 7e-5
- **Dataset Size:** 49.2k
3. **Fine‑tune (FT) dataset**
- **Epochs:** 2.5
- **Learning Rate:** 2e-5
- **Dataset Size:** 4.12k
- **Optimizer:** AdamW_8bit with cosine decay
- **Quantization:** 4‑bit (`bnb-4bit`) for inference
- **Warm Up Steps:** 0.1% of each dataset
---
## 🚀 Installation
Andy-4-tiny is an Edge-case model, built to run on the CPU and use minimal ram
| Quantization | RAM Required |
|--------------|---------------|
| F16 | CPU |
| Q8_0 | CPU |
| Q4_K_M | CPU |
### 1. Installation directly on Ollama
1. Visit [Andy-4 on Ollama](https://ollama.com/Sweaterdog/Andy-4)
2. Copy the command after choosing model type / quantization
3. Run the command in the terminal
4. Set the profile's model to be what you installed, such as `ollama/sweaterdog/andy-4:tiny-q8_0`
### 2. Manual Download & Modelfile
1. **Download**
- From the HF **Files** tab, grab your chosen `.GGUF` quant weights (e.g. `Andy-4-tiny.Q4_K_M.gguf`).
- Download the provided `Modelfile`.
2. **Edit**
Change
```text
FROM YOUR/PATH/HERE
```
to
```text
FROM /path/to/Andy-4-tiny.Q4_K_M.gguf
```
*Optional*:
Increase the parameter `num_ctx` to a higher value for longer conversations if you:
**A.** Have extra VRAM
**B.** Quantized the context window
**C.** Can use a smaller model
3. **Create**
```bash
ollama create andy-4-tiny -f Modelfile
```
This registers the **Andy‑4-tiny** model locally.
---
## 📌 Acknowledgments
<details>
<summary>Click to expand</summary>
- **Data & Models by:** @Sweaterdog
- **Framework:** Mindcraft (https://github.com/kolbytn/mindcraft)
- **LoRA Weights:** https://huggingface.co/Sweaterdog/Andy-4-LoRA
- *Explicit credit is not granted to Meta since this model was trained off of a slightly different architecture, from [DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B)
</details>
---
## ⚖️ License
See [Andy 1.0 License](LICENSE).
*This work uses data and models created by @Sweaterdog.* |