File size: 3,548 Bytes
bed4766
 
 
 
 
 
 
 
 
 
 
 
 
2880937
bed4766
 
 
 
b97c214
 
bed4766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cca7411
bed4766
 
 
cca7411
3d4d23e
 
bed4766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
datasets:
- Sweaterdog/Andy-4-base
- Sweaterdog/Andy-4-ft
- Sweaterdog/Andy-base-2
language:
- en
base_model:
- HuggingFaceTB/SmolLM2-360M-Instruct
tags:
- gaming
- minecraft
- mindcraft
library_name: transformers
---

# 🧠 Andy‑4-tiny 🐜

![file_0000000057e4622f835ec6ade102adfc.png](https://cdn-uploads.huggingface.co/production/uploads/66960602f0ffd8e3a381106a/hXe0j2BbfohvOmtfdZyJu.png)


**Andy‑4-tiny** is an 360 Million‑parameter specialist model tuned for Minecraft gameplay via the Mindcraft framework.
**The Current version of Andy-4-tiny is** `Andy-4-tiny-0522`.

> ⚠️ **Certification:**  
> Andy‑4 is **not yet certified** by the Mindcraft developers. Use in production at your own discretion.


## 🔍 Model Specifications

- **Parameters:** 360M  
- **Training Hardware:** 1 × NVIDIA RTX 3070  
- **Duration:** ~ 36 hours total  
- **Data Volumes:**  
  - **Messages:** 179,384  
  - **Tokens:** 425,535,198  
  - **Conversations:** 62,149  

- **Base Architecture:** SmolLM2 
- **License:** [Andy 1.0 License](LICENSE)
- **Repository:** https://huggingface.co/Sweaterdog/Andy‑4

---

## 📊 Training Regimen

1. **Andy‑4‑base‑1** dataset  
   - **Epochs:** 2  
   - **Learning Rate:**   5e-5
   - **Dataset Size:** 47.4k

2. **Andy‑4‑base-2** dataset  
   - **Epochs:** 2  
   - **Learning Rate:**   7e-5
   - **Dataset Size:** 49.2k

3. **Fine‑tune (FT) dataset**  
   - **Epochs:** 2.5  
   - **Learning Rate:** 2e-5
   - **Dataset Size:** 4.12k

- **Optimizer:** AdamW_8bit with cosine decay  
- **Quantization:** 4‑bit (`bnb-4bit`) for inference
- **Warm Up Steps:** 0.1% of each dataset

---

## 🚀 Installation

Andy-4-tiny is an Edge-case model, built to run on the CPU and use minimal ram. These are the requirements to *Run Them*, not to use them while Minecraft is also running.

| Quantization | RAM Required |
|--------------|---------------|
| F16          | CPU 2GB      |
| Q8_0         | CPU 1GB     |
| Q4_K_M       | CPU 0.8GB      |

### 1. Installation directly on Ollama

1. Visit [Andy-4 on Ollama](https://ollama.com/Sweaterdog/Andy-4)
2. Copy the command after choosing model type / quantization
3. Run the command in the terminal
4. Set the profile's model to be what you installed, such as `ollama/sweaterdog/andy-4:tiny-q8_0`

### 2. Manual Download & Modelfile

1. **Download**  
   - From the HF **Files** tab, grab your chosen `.GGUF` quant weights (e.g. `Andy-4-tiny.Q4_K_M.gguf`).  
   - Download the provided `Modelfile`.


2. **Edit**

   Change
   ```text
   FROM YOUR/PATH/HERE
   ```
   to
   ```text
   FROM /path/to/Andy-4-tiny.Q4_K_M.gguf
   ```
  *Optional*:
  Increase the parameter `num_ctx` to a higher value for longer conversations if you:

  **A.** Have extra VRAM

  **B.** Quantized the context window

  **C.** Can use a smaller model

3. **Create**  
   ```bash
   ollama create andy-4-tiny -f Modelfile
   ```

This registers the **Andy‑4-tiny** model locally.

---

## 📌 Acknowledgments

<details>
<summary>Click to expand</summary>

- **Data & Models by:** @Sweaterdog  
- **Framework:** Mindcraft (https://github.com/kolbytn/mindcraft)  
- **LoRA Weights:** https://huggingface.co/Sweaterdog/Andy-4-LoRA
- *Explicit credit is not granted to Meta since this model was trained off of a slightly different architecture, from [DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B)
</details>

---

## ⚖️ License

See [Andy 1.0 License](LICENSE).

*This work uses data and models created by @Sweaterdog.*