SwordElucidator
commited on
Commit
•
1aa27bb
1
Parent(s):
8d79b07
Create handler.py
Browse files- handler.py +43 -0
handler.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
from io import BytesIO
|
3 |
+
from typing import Any, List, Dict
|
4 |
+
|
5 |
+
from PIL import Image
|
6 |
+
from transformers import AutoTokenizer, AutoModel
|
7 |
+
|
8 |
+
|
9 |
+
class EndpointHandler():
|
10 |
+
def __init__(self, path=""):
|
11 |
+
# Use a pipeline as a high-level helper
|
12 |
+
model_name = "SwordElucidator/MiniCPM-Llama3-V-2_5"
|
13 |
+
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
15 |
+
model.eval()
|
16 |
+
self.model = model
|
17 |
+
self.tokenizer = tokenizer
|
18 |
+
|
19 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
20 |
+
inputs = data.pop("inputs", data)
|
21 |
+
|
22 |
+
image = inputs.pop("image", None) # base64 image as bytes
|
23 |
+
question = inputs.pop("question", None)
|
24 |
+
msgs = inputs.pop("msgs", None)
|
25 |
+
|
26 |
+
|
27 |
+
parameters = data.pop("parameters", {})
|
28 |
+
|
29 |
+
image = Image.open(BytesIO(base64.b64decode(image)))
|
30 |
+
|
31 |
+
if not msgs:
|
32 |
+
msgs = [{'role': 'user', 'content': question}]
|
33 |
+
|
34 |
+
res = self.model.chat(
|
35 |
+
image=image,
|
36 |
+
msgs=msgs,
|
37 |
+
tokenizer=self.tokenizer,
|
38 |
+
sampling=True, # if sampling=False, beam_search will be used by default
|
39 |
+
temperature=parameters.get('temperature', 0.7),
|
40 |
+
# system_prompt='' # pass system_prompt if needed
|
41 |
+
)
|
42 |
+
|
43 |
+
return res
|