lbourdois commited on
Commit
799253e
·
verified ·
1 Parent(s): 3e0961b

Improve language tag

Browse files

Hi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.

Files changed (1) hide show
  1. README.md +78 -64
README.md CHANGED
@@ -1,64 +1,78 @@
1
- ---
2
- library_name: transformers
3
- license: other
4
- base_model: Qwen/Qwen2.5-1.5B-Instruct
5
- tags:
6
- - llama-factory
7
- - full
8
- - generated_from_trainer
9
- model-index:
10
- - name: output1
11
- results: []
12
- ---
13
-
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
-
17
- # output1
18
-
19
- This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the identity and the alpaca_en_demo datasets.
20
- It achieves the following results on the evaluation set:
21
- - Loss: 2.4530
22
-
23
- ## Model description
24
-
25
- More information needed
26
-
27
- ## Intended uses & limitations
28
-
29
- More information needed
30
-
31
- ## Training and evaluation data
32
-
33
- More information needed
34
-
35
- ## Training procedure
36
-
37
- ### Training hyperparameters
38
-
39
- The following hyperparameters were used during training:
40
- - learning_rate: 1e-05
41
- - train_batch_size: 1
42
- - eval_batch_size: 1
43
- - seed: 42
44
- - gradient_accumulation_steps: 8
45
- - total_train_batch_size: 8
46
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
- - lr_scheduler_type: cosine
48
- - lr_scheduler_warmup_ratio: 0.1
49
- - training_steps: 1080
50
-
51
- ### Training results
52
-
53
- | Training Loss | Epoch | Step | Validation Loss |
54
- |:-------------:|:------:|:----:|:---------------:|
55
- | 0.1411 | 4.0775 | 500 | 1.5800 |
56
- | 0.0056 | 8.1549 | 1000 | 2.4301 |
57
-
58
-
59
- ### Framework versions
60
-
61
- - Transformers 4.45.0
62
- - Pytorch 2.2.0+cu121
63
- - Datasets 2.21.0
64
- - Tokenizers 0.20.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: Qwen/Qwen2.5-1.5B-Instruct
5
+ tags:
6
+ - llama-factory
7
+ - full
8
+ - generated_from_trainer
9
+ language:
10
+ - zho
11
+ - eng
12
+ - fra
13
+ - spa
14
+ - por
15
+ - deu
16
+ - ita
17
+ - rus
18
+ - jpn
19
+ - kor
20
+ - vie
21
+ - tha
22
+ - ara
23
+ model-index:
24
+ - name: output1
25
+ results: []
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # output1
32
+
33
+ This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the identity and the alpaca_en_demo datasets.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 2.4530
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 1e-05
55
+ - train_batch_size: 1
56
+ - eval_batch_size: 1
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 8
59
+ - total_train_batch_size: 8
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: cosine
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - training_steps: 1080
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss |
68
+ |:-------------:|:------:|:----:|:---------------:|
69
+ | 0.1411 | 4.0775 | 500 | 1.5800 |
70
+ | 0.0056 | 8.1549 | 1000 | 2.4301 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.45.0
76
+ - Pytorch 2.2.0+cu121
77
+ - Datasets 2.21.0
78
+ - Tokenizers 0.20.0