--- tags: - image-classification - sign-language - indonesian library_name: pytorch base_model: google/efficientnet-b3 language: - id metrics: - accuracy pipeline_tag: image-classification --- # EfficientNet-B3 BISINDO Indonesian Sign Language Classifier Trained on 9169 images with 26 classes (A-Z BISINDO (Bahasa Isyarat Indonesia) sign language). ## Usage ```python model = models.efficientnet_b3(pretrained=False) model.classifier = nn.Sequential( nn.Dropout(p=0.4), nn.Linear(1536, 512), nn.SiLU(), nn.Dropout(p=0.3), nn.Linear(512, 26) ) model.load_state_dict(torch.load('efficientnet_bisindo_sign_language.pth')) ``` ## Training Result | Epoch | Train Loss | Train Acc | Val Loss | Val Acc | |-------|------------|-----------|----------|---------| | 1 | 1.5356 | 0.7389 | 1.0504 | 0.9106 | | 2 | 1.0970 | 0.8798 | 0.9385 | 0.9248 | | 3 | 1.0251 | 0.8945 | 0.8828 | 0.9438 | | 4 | 0.9710 | 0.9177 | 0.8689 | 0.9477 | | 5 | 0.9382 | 0.9256 | 0.8370 | 0.9597 | | 6 | 0.9161 | 0.9365 | 0.8222 | 0.9656 | | 7 | 0.9052 | 0.9393 | 0.8133 | 0.9651 | | 8 | 0.8904 | 0.9464 | 0.8094 | 0.9635 | | 9 | 0.8756 | 0.9460 | 0.8023 | 0.9738 | | 10 | 0.8656 | 0.9521 | 0.7939 | 0.9744 | | 11 | 0.8609 | 0.9560 | 0.7836 | 0.9749 | | 12 | 0.8544 | 0.9545 | 0.7876 | 0.9755 | | 13 | 0.8396 | 0.9654 | 0.7929 | 0.9755 | | 14 | 0.8415 | 0.9628 | 0.7776 | 0.9798 | | 15 | 0.8333 | 0.9654 | 0.7827 | 0.9722 | | 16 | 0.8286 | 0.9676 | 0.7695 | 0.9815 | | 17 | 0.8235 | 0.9695 | 0.7761 | 0.9853 | | 18 | 0.8155 | 0.9715 | 0.7714 | 0.9820 | | 19 | 0.8151 | 0.9748 | 0.7589 | 0.9826 | | 20 | 0.8139 | 0.9730 | 0.7756 | 0.9776 | | 21 | 0.8018 | 0.9791 | 0.7613 | 0.9847 | | 22 | 0.7942 | 0.9789 | 0.7475 | 0.9869 | | 23 | 0.7859 | 0.9823 | 0.7458 | 0.9864 | | 24 | 0.7871 | 0.9802 | 0.7538 | 0.9869 | | 25 | 0.7880 | 0.9810 | 0.7525 | 0.9880 |