--- license: mit language: - zh - en pipeline_tag: text-generation library_name: transformers --- # GLM-4-32B-Chat-0414 ## Introduction Based on our latest technological advancements, we have trained a `GLM-4-0414` series model. During pretraining, we incorporated more code-related and reasoning-related data. In the alignment phase, we optimized the model specifically for agent capabilities. As a result, the model's performance in agent tasks such as tool use, web search, and coding has been significantly improved. ## Inference Code Make Sure Using `transforemrs>=4.51.3`. ```python from transformers import AutoModelForCausalLM, AutoTokenizer MODEL_PATH = "THUDM/GLM-4-32B-Chat-0414" tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH) model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto") message = [{"role": "user", "content": "hello!"}] inputs = tokenizer.apply_chat_template( message, return_tensors="pt", add_generation_prompt=True, return_dict=True, ).to(model.device) generate_kwargs = { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "max_new_tokens": 128, "do_sample": False, } out = model.generate(**generate_kwargs) print(tokenizer.decode(out[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)) ```