""" Train SAR-DDPM model. """ import argparse import torch.nn.functional as F from guided_diffusion import dist_util, logger from guided_diffusion.image_datasets import load_data from guided_diffusion.resample import create_named_schedule_sampler from guided_diffusion.script_util import ( sr_model_and_diffusion_defaults, sr_create_model_and_diffusion, args_to_dict, add_dict_to_argparser, ) from guided_diffusion.train_util import TrainLoop from torch.utils.data import DataLoader # from train_dataset import TrainData from valdata import ValData, ValDataNew train_dir = 'path_to_training_data/' val_dir = 'path_to_validation_data/' pretrained_weight_path = "./weights/64_256_upsampler.pt" def main(): args = create_argparser().parse_args() dist_util.setup_dist() logger.configure() logger.log("creating model...") model, diffusion = sr_create_model_and_diffusion( **args_to_dict(args, sr_model_and_diffusion_defaults().keys()) ) model.to(dist_util.dev()) schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion) logger.log("creating data loader...") val_data = DataLoader(ValDataNew(dataset_path=val_dir), batch_size=1, shuffle=False, num_workers=1) print(args) data = load_sar_data( args.data_dir, train_dir, args.batch_size, large_size=256, small_size=256, class_cond=False, ) logger.log("training...") TrainLoop( model=model, diffusion=diffusion, data=data, val_dat=val_data, batch_size=args.batch_size, microbatch=args.microbatch, lr=args.lr, ema_rate=args.ema_rate, log_interval=args.log_interval, save_interval=args.save_interval, resume_checkpoint=args.resume_checkpoint, args = args, use_fp16=args.use_fp16, fp16_scale_growth=args.fp16_scale_growth, schedule_sampler=schedule_sampler, weight_decay=args.weight_decay, lr_anneal_steps=args.lr_anneal_steps, ).run_loop() def load_sar_data(data_dir,gt_dirs, batch_size, large_size, small_size, class_cond=False): data = load_data( data_dir=data_dir, gt_dir=gt_dirs, batch_size=batch_size, image_size=large_size, class_cond=False, ) for large_batch, model_kwargs in data: yield large_batch, model_kwargs def create_argparser(): defaults = dict( data_dir = train_dir, schedule_sampler="uniform", lr=1e-4, # lr=5e-5, weight_decay=0.0, lr_anneal_steps=0, batch_size=2, microbatch=1, ema_rate="0.9999", log_interval=1000, save_interval=10, resume_checkpoint=pretrained_weight_path, use_fp16=False, fp16_scale_growth=1e-3, ) defaults.update(sr_model_and_diffusion_defaults()) parser = argparse.ArgumentParser() add_dict_to_argparser(parser, defaults) return parser if __name__ == "__main__": main()