|
import sys
|
|
import os
|
|
|
|
current_dir = os.path.dirname(os.path.abspath(__file__))
|
|
sys.path.append(current_dir)
|
|
|
|
from transformers import PreTrainedModel, PretrainedConfig, AutoConfig
|
|
import torch
|
|
import numpy as np
|
|
from f5_tts.infer.utils_infer import (
|
|
infer_process,
|
|
load_model,
|
|
load_vocoder,
|
|
preprocess_ref_audio_text,
|
|
)
|
|
from f5_tts.model import DiT
|
|
import soundfile as sf
|
|
import io
|
|
from pydub import AudioSegment, silence
|
|
from huggingface_hub import hf_hub_download
|
|
from safetensors.torch import load_file
|
|
import os
|
|
|
|
class INF5Config(PretrainedConfig):
|
|
model_type = "inf5"
|
|
|
|
def __init__(self, ckpt_path: str = "checkpoints/model_best.pt", vocab_path: str = "checkpoints/vocab.txt",
|
|
speed: float = 1.0, remove_sil: bool = True, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.ckpt_path = ckpt_path
|
|
self.vocab_path = vocab_path
|
|
self.speed = speed
|
|
self.remove_sil = remove_sil
|
|
|
|
class INF5Model(PreTrainedModel):
|
|
config_class = INF5Config
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
self.vocoder = torch.compile(load_vocoder(vocoder_name="vocos", is_local=False, device=device))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vocab_path = hf_hub_download(config.name_or_path, filename="checkpoints/vocab.txt")
|
|
|
|
self.ema_model = torch.compile(load_model(
|
|
DiT,
|
|
dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4),
|
|
mel_spec_type="vocos",
|
|
vocab_file=vocab_path,
|
|
device=device
|
|
)
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, text: str, ref_audio_path: str, ref_text: str):
|
|
"""
|
|
Generate speech given a reference audio & text input.
|
|
|
|
Args:
|
|
text (str): The text to be synthesized.
|
|
ref_audio_path (str): Path to the reference audio file.
|
|
ref_text (str): The reference text.
|
|
|
|
Returns:
|
|
np.array: Generated waveform.
|
|
"""
|
|
|
|
if not os.path.exists(ref_audio_path):
|
|
raise FileNotFoundError(f"Reference audio file {ref_audio_path} not found.")
|
|
|
|
|
|
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_path, ref_text)
|
|
|
|
|
|
self.ema_model.to(self.device)
|
|
self.vocoder.to(self.device)
|
|
|
|
|
|
audio, final_sample_rate, _ = infer_process(
|
|
ref_audio,
|
|
ref_text,
|
|
text,
|
|
self.ema_model,
|
|
self.vocoder,
|
|
mel_spec_type="vocos",
|
|
speed=self.config.speed,
|
|
device=self.device,
|
|
)
|
|
|
|
|
|
buffer = io.BytesIO()
|
|
sf.write(buffer, audio, samplerate=24000, format="WAV")
|
|
buffer.seek(0)
|
|
audio_segment = AudioSegment.from_file(buffer, format="wav")
|
|
|
|
if self.config.remove_sil:
|
|
non_silent_segs = silence.split_on_silence(
|
|
audio_segment,
|
|
min_silence_len=1000,
|
|
silence_thresh=-50,
|
|
keep_silence=500,
|
|
seek_step=10,
|
|
)
|
|
non_silent_wave = sum(non_silent_segs, AudioSegment.silent(duration=0))
|
|
audio_segment = non_silent_wave
|
|
|
|
|
|
target_dBFS = -20.0
|
|
change_in_dBFS = target_dBFS - audio_segment.dBFS
|
|
audio_segment = audio_segment.apply_gain(change_in_dBFS)
|
|
|
|
return np.array(audio_segment.get_array_of_samples())
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
model = INF5Model(INF5Config(ckpt_path="checkpoints/model_best.pt", vocab_path="checkpoints/vocab.txt"))
|
|
model.save_pretrained("INF5")
|
|
model.config.save_pretrained("INF5")
|
|
|
|
import numpy as np
|
|
import soundfile as sf
|
|
from transformers import AutoConfig, AutoModel
|
|
|
|
AutoConfig.register("inf5", INF5Config)
|
|
AutoModel.register(INF5Config, INF5Model)
|
|
|
|
model = AutoModel.from_pretrained("INF5")
|
|
audio = model("नमस्ते! संगीत की तरह जीवन भी खूबसूरत होता है, बस इसे सही ताल में जीना आना चाहिए.",
|
|
ref_audio_path="prompts/PAN_F_HAPPY_00001.wav",
|
|
ref_text="भਹੰਪੀ ਵਿੱਚ ਸਮਾਰਕਾਂ ਦੇ ਭਵਨ ਨਿਰਮਾਣ ਕਲਾ ਦੇ ਵੇਰਵੇ ਗੁੰਝਲਦਾਰ ਅਤੇ ਹੈਰਾਨ ਕਰਨ ਵਾਲੇ ਹਨ, ਜੋ ਮੈਨੂੰ ਖੁਸ਼ ਕਰਦੇ ਹਨ।")
|
|
|
|
if audio.dtype == np.int16:
|
|
audio = audio.astype(np.float32) / 32768.0
|
|
sf.write("samples/namaste.wav", np.array(audio, dtype=np.float32), samplerate=24000)
|
|
|
|
from huggingface_hub import HfApi
|
|
|
|
repo_id = "svp19/INF5"
|
|
|
|
|
|
api = HfApi()
|
|
api.upload_folder(
|
|
folder_path="INF5",
|
|
repo_id=repo_id,
|
|
repo_type="model"
|
|
)
|
|
print(f"Model pushed to https://huggingface.co/{repo_id} 🚀")
|
|
|
|
print("Verify Upload")
|
|
from transformers import AutoModel
|
|
model = AutoModel.from_pretrained(repo_id)
|
|
print("Success")
|
|
|
|
|