--- library_name: transformers license: cc-by-nc-4.0 base_model: TanAlexanderlz/BxSD_RGBCROP_Aug16F-8B16F5e6-poly tags: - generated_from_trainer metrics: - accuracy model-index: - name: BxSD-finetuned-UCF_RGBCROP_5e6-poly_2 results: [] --- # BxSD-finetuned-UCF_RGBCROP_5e6-poly_2 This model is a fine-tuned version of [TanAlexanderlz/BxSD_RGBCROP_Aug16F-8B16F5e6-poly](https://huggingface.co/TanAlexanderlz/BxSD_RGBCROP_Aug16F-8B16F5e6-poly) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3358 - Accuracy: 0.8056 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: polynomial - lr_scheduler_warmup_ratio: 0.1 - training_steps: 345 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.5386 | 0.0696 | 24 | 0.5426 | 0.7619 | | 0.284 | 1.0696 | 48 | 0.4675 | 0.8333 | | 0.0153 | 2.0696 | 72 | 0.3591 | 0.9048 | | 0.0033 | 3.0696 | 96 | 0.4866 | 0.9048 | | 0.0014 | 4.0696 | 120 | 0.4560 | 0.9048 | | 0.0011 | 5.0696 | 144 | 0.4384 | 0.9286 | | 0.0009 | 6.0696 | 168 | 0.4652 | 0.9286 | | 0.0008 | 7.0696 | 192 | 0.4820 | 0.9286 | | 0.0007 | 8.0696 | 216 | 0.4606 | 0.9286 | | 0.0006 | 9.0696 | 240 | 0.4676 | 0.9286 | | 0.0006 | 10.0696 | 264 | 0.4681 | 0.9286 | | 0.0006 | 11.0696 | 288 | 0.4760 | 0.9286 | | 0.0005 | 12.0696 | 312 | 0.4777 | 0.9286 | | 0.0005 | 13.0696 | 336 | 0.4788 | 0.9286 | | 0.0006 | 14.0261 | 345 | 0.4786 | 0.9286 | ### Framework versions - Transformers 4.52.2 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1