--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base-finetuned-kinetics tags: - generated_from_trainer metrics: - accuracy model-index: - name: RALL_NoCrop_Aug16F-8B16F-GACWDlr results: [] --- # RALL_NoCrop_Aug16F-8B16F-GACWDlr This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8643 - Accuracy: 0.8032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 3462 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.6327 | 0.0416 | 144 | 0.6327 | 0.6299 | | 0.4228 | 1.0416 | 288 | 0.5300 | 0.7464 | | 0.2855 | 2.0416 | 432 | 0.5658 | 0.7648 | | 0.2789 | 3.0416 | 576 | 0.5733 | 0.7587 | | 0.237 | 4.0416 | 720 | 0.7180 | 0.7628 | | 0.1125 | 5.0416 | 864 | 0.7992 | 0.7710 | | 0.0921 | 6.0416 | 1008 | 0.8145 | 0.7669 | | 0.1423 | 7.0416 | 1152 | 0.9354 | 0.7648 | | 0.1307 | 8.0416 | 1296 | 0.9036 | 0.7648 | | 0.0479 | 9.0416 | 1440 | 1.1271 | 0.7730 | | 0.0724 | 10.0416 | 1584 | 1.0805 | 0.7669 | | 0.1424 | 11.0416 | 1728 | 1.0949 | 0.7669 | | 0.0577 | 12.0416 | 1872 | 1.1183 | 0.7730 | | 0.1258 | 13.0416 | 2016 | 1.0614 | 0.7914 | | 0.0271 | 14.0416 | 2160 | 1.1381 | 0.7771 | | 0.0557 | 15.0416 | 2304 | 1.2154 | 0.7587 | | 0.054 | 16.0416 | 2448 | 1.1568 | 0.7710 | | 0.1001 | 17.0416 | 2592 | 1.1639 | 0.7853 | | 0.0401 | 18.0416 | 2736 | 1.1892 | 0.7812 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1