--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base-finetuned-kinetics tags: - generated_from_trainer metrics: - accuracy model-index: - name: RALL_RGBCROP_Aug16F-WD001 results: [] --- # RALL_RGBCROP_Aug16F-WD001 This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6801 - Accuracy: 0.8394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 3462 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.4792 | 0.0835 | 289 | 0.5590 | 0.7157 | | 0.2392 | 1.0835 | 578 | 0.5009 | 0.7955 | | 0.0414 | 2.0835 | 867 | 0.6815 | 0.8016 | | 0.0484 | 3.0835 | 1156 | 0.8761 | 0.8016 | | 0.0032 | 4.0835 | 1445 | 0.9753 | 0.8139 | | 0.0004 | 5.0835 | 1734 | 1.0459 | 0.8057 | | 0.002 | 6.0835 | 2023 | 1.1537 | 0.7914 | | 0.0002 | 7.0835 | 2312 | 1.1430 | 0.8016 | | 0.0002 | 8.0835 | 2601 | 1.1876 | 0.7996 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1