File size: 2,046 Bytes
d5630b1 16fa6f9 d5630b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base-finetuned-kinetics
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: RALL_RGBCROP_Aug16F-polynomial
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# RALL_RGBCROP_Aug16F-polynomial
This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5478
- Accuracy: 0.8635
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: polynomial
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 3462
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.4872 | 0.0835 | 289 | 0.5884 | 0.6667 |
| 0.2293 | 1.0835 | 578 | 0.5230 | 0.7975 |
| 0.0214 | 2.0835 | 867 | 0.7384 | 0.8016 |
| 0.0423 | 3.0835 | 1156 | 0.8912 | 0.8139 |
| 0.0008 | 4.0835 | 1445 | 1.0195 | 0.8016 |
| 0.0004 | 5.0835 | 1734 | 1.0783 | 0.7996 |
| 0.0003 | 6.0835 | 2023 | 1.1355 | 0.8016 |
| 0.0002 | 7.0835 | 2312 | 1.1726 | 0.7935 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
|