--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base-finetuned-kinetics tags: - generated_from_trainer metrics: - accuracy model-index: - name: RALL_RGBCROP_Aug16F-polynomial results: [] --- # RALL_RGBCROP_Aug16F-polynomial This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5478 - Accuracy: 0.8635 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: polynomial - lr_scheduler_warmup_ratio: 0.1 - training_steps: 3462 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.4872 | 0.0835 | 289 | 0.5884 | 0.6667 | | 0.2293 | 1.0835 | 578 | 0.5230 | 0.7975 | | 0.0214 | 2.0835 | 867 | 0.7384 | 0.8016 | | 0.0423 | 3.0835 | 1156 | 0.8912 | 0.8139 | | 0.0008 | 4.0835 | 1445 | 1.0195 | 0.8016 | | 0.0004 | 5.0835 | 1734 | 1.0783 | 0.7996 | | 0.0003 | 6.0835 | 2023 | 1.1355 | 0.8016 | | 0.0002 | 7.0835 | 2312 | 1.1726 | 0.7935 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1