Commit
·
c430be3
1
Parent(s):
c05fef2
Upload Revised.ipynb
Browse files- Revised.ipynb +546 -0
Revised.ipynb
ADDED
@@ -0,0 +1,546 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {
|
7 |
+
"id": "5xhZBPJobvEm"
|
8 |
+
},
|
9 |
+
"outputs": [],
|
10 |
+
"source": [
|
11 |
+
"!pip install git+https://github.com/huggingface/diffusers.git\n",
|
12 |
+
"!pip install git+https://github.com/huggingface/accelerate\n",
|
13 |
+
"!pip install --upgrade transformers"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": null,
|
19 |
+
"metadata": {
|
20 |
+
"id": "KuhLUa51fQfE"
|
21 |
+
},
|
22 |
+
"outputs": [],
|
23 |
+
"source": [
|
24 |
+
"\n",
|
25 |
+
"!pip install datasets\n",
|
26 |
+
"\n",
|
27 |
+
"\n",
|
28 |
+
"!pip install torchvision\n",
|
29 |
+
"!sudo apt -qq install git-lfs\n",
|
30 |
+
"!git config --global credential.helper store\n",
|
31 |
+
"!pip install tqdm\n",
|
32 |
+
"!pip install bitsandbytes\n",
|
33 |
+
"!pip install torch\n",
|
34 |
+
"!pip install torchvision"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": null,
|
40 |
+
"metadata": {
|
41 |
+
"id": "t6BleLJZgKR0"
|
42 |
+
},
|
43 |
+
"outputs": [],
|
44 |
+
"source": [
|
45 |
+
"from dataclasses import dataclass\n",
|
46 |
+
"from datasets import load_dataset\n",
|
47 |
+
"from torchvision import transforms\n",
|
48 |
+
"from accelerate.state import AcceleratorState\n",
|
49 |
+
"import math\n",
|
50 |
+
"import os\n",
|
51 |
+
"import numpy as np\n",
|
52 |
+
"import accelerate\n",
|
53 |
+
"from accelerate import Accelerator\n",
|
54 |
+
"from tqdm.auto import tqdm\n",
|
55 |
+
"from pathlib import Path\n",
|
56 |
+
"from accelerate import notebook_launcher\n",
|
57 |
+
"import torch.nn.functional as F\n",
|
58 |
+
"from diffusers.optimization import get_cosine_schedule_with_warmup\n",
|
59 |
+
"import torch\n",
|
60 |
+
"from PIL import Image\n",
|
61 |
+
"from diffusers import UNet2DModel\n",
|
62 |
+
"from transformers import CLIPTextModel, CLIPTokenizer\n",
|
63 |
+
"from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel\n",
|
64 |
+
"from diffusers.optimization import get_scheduler\n",
|
65 |
+
"from huggingface_hub import create_repo, upload_folder, upload_file\n",
|
66 |
+
"import bitsandbytes as bnb\n",
|
67 |
+
"from transformers.utils import ContextManagers\n",
|
68 |
+
"from huggingface_hub import snapshot_download\n",
|
69 |
+
"\n",
|
70 |
+
"\n",
|
71 |
+
"@dataclass\n",
|
72 |
+
"class TrainingConfig:\n",
|
73 |
+
" pretrained_model_name_or_path = \"runwayml/stable-diffusion-v1-5\"\n",
|
74 |
+
" validation_prompts = [\"a dragon on a white background\",\" a fiery skull\", \"a skull\", \"a face\", \"a snake and skull\"]\n",
|
75 |
+
" image_size = 512 # the generated image resolution\n",
|
76 |
+
" train_batch_size = 2\n",
|
77 |
+
" eval_batch_size = 2 # how many images to sample during evaluation\n",
|
78 |
+
" num_epochs = 50\n",
|
79 |
+
" gradient_accumulation_steps = 1\n",
|
80 |
+
" lr_scheduler = \"constant\"\n",
|
81 |
+
" learning_rate = 1e-5\n",
|
82 |
+
" lr_warmup_steps = 500\n",
|
83 |
+
" save_image_epochs = 1\n",
|
84 |
+
" save_model_epochs = 1\n",
|
85 |
+
" token = \"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\"\n",
|
86 |
+
" num_processes = 1\n",
|
87 |
+
" mixed_precision = \"fp16\" # `no` for float32, `fp16` for automatic mixed precision\n",
|
88 |
+
" output_dir = \"tattoo-diffusion\" # the model name locally and on the HF Hub\n",
|
89 |
+
"\n",
|
90 |
+
" push_to_hub = True # whether to upload the saved model to the HF Hub\n",
|
91 |
+
" hub_private_repo = False\n",
|
92 |
+
" overwrite_output_dir = True # overwrite the old model when re-running the notebook\n",
|
93 |
+
" seed = 0\n",
|
94 |
+
"\n",
|
95 |
+
"\n",
|
96 |
+
"config = TrainingConfig()"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"cell_type": "code",
|
101 |
+
"execution_count": null,
|
102 |
+
"metadata": {
|
103 |
+
"id": "yBKWnM2p_qI6"
|
104 |
+
},
|
105 |
+
"outputs": [],
|
106 |
+
"source": [
|
107 |
+
"snapshot_download(repo_id=\"TejasNavada/tattoo-diffusion\", local_dir=config.output_dir, local_dir_use_symlinks=False )"
|
108 |
+
]
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"cell_type": "code",
|
112 |
+
"execution_count": null,
|
113 |
+
"metadata": {
|
114 |
+
"id": "GI92xkd-jy7C"
|
115 |
+
},
|
116 |
+
"outputs": [],
|
117 |
+
"source": [
|
118 |
+
"\n",
|
119 |
+
"\n",
|
120 |
+
"def make_grid(images, rows, cols):\n",
|
121 |
+
" w, h = images[0].size\n",
|
122 |
+
" grid = Image.new(\"RGB\", size=(cols * w, rows * h))\n",
|
123 |
+
" for i, image in enumerate(images):\n",
|
124 |
+
" grid.paste(image, box=(i % cols * w, i // cols * h))\n",
|
125 |
+
" return grid\n",
|
126 |
+
"\n",
|
127 |
+
"\n",
|
128 |
+
"def evaluate(vae, text_encoder, tokenizer, unet, config, accelerator, epoch):\n",
|
129 |
+
" pipeline = StableDiffusionPipeline.from_pretrained(\n",
|
130 |
+
" config.pretrained_model_name_or_path,\n",
|
131 |
+
" vae=accelerator.unwrap_model(vae),\n",
|
132 |
+
" text_encoder=accelerator.unwrap_model(text_encoder),\n",
|
133 |
+
" tokenizer=tokenizer,\n",
|
134 |
+
" unet=accelerator.unwrap_model(unet),\n",
|
135 |
+
" safety_checker=None,\n",
|
136 |
+
" torch_dtype=torch.float16,\n",
|
137 |
+
" )\n",
|
138 |
+
"\n",
|
139 |
+
" pipeline = pipeline.to(accelerator.device)\n",
|
140 |
+
" pipeline.set_progress_bar_config(disable=True)\n",
|
141 |
+
"\n",
|
142 |
+
" generator = torch.Generator(device=accelerator.device).manual_seed(config.seed)\n",
|
143 |
+
"\n",
|
144 |
+
" images = []\n",
|
145 |
+
"\n",
|
146 |
+
" for i in range(len(config.validation_prompts)):\n",
|
147 |
+
" with torch.autocast(\"cuda\"):\n",
|
148 |
+
" image = pipeline(config.validation_prompts[i], num_inference_steps=20, generator=None).images[0]\n",
|
149 |
+
"\n",
|
150 |
+
" images.append(image)\n",
|
151 |
+
"\n",
|
152 |
+
" for tracker in accelerator.trackers:\n",
|
153 |
+
" if tracker.name == \"tensorboard\":\n",
|
154 |
+
" np_images = np.stack([np.asarray(img) for img in images])\n",
|
155 |
+
" tracker.writer.add_images(\"validation\", np_images, epoch, dataformats=\"NHWC\")\n",
|
156 |
+
"\n",
|
157 |
+
" del pipeline\n",
|
158 |
+
" torch.cuda.empty_cache()\n",
|
159 |
+
"\n",
|
160 |
+
" image_grid = make_grid(images, rows=1, cols=len(images))\n",
|
161 |
+
"\n",
|
162 |
+
" test_dir = os.path.join(config.output_dir, \"samples\")\n",
|
163 |
+
" os.makedirs(test_dir, exist_ok=True)\n",
|
164 |
+
" image_grid.save(f\"{test_dir}/{epoch:04d}.png\")\n",
|
165 |
+
"\n",
|
166 |
+
" return images\n",
|
167 |
+
"\n",
|
168 |
+
"\n",
|
169 |
+
"\n"
|
170 |
+
]
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"cell_type": "code",
|
174 |
+
"execution_count": null,
|
175 |
+
"metadata": {
|
176 |
+
"id": "kh-C1RIAgRMV"
|
177 |
+
},
|
178 |
+
"outputs": [],
|
179 |
+
"source": [
|
180 |
+
"\n",
|
181 |
+
"\n",
|
182 |
+
"config.dataset_name = \"Drozdik/tattoo_v3\"\n",
|
183 |
+
"dataset = load_dataset(config.dataset_name, split=\"train\")\n",
|
184 |
+
"tokenizer = CLIPTokenizer.from_pretrained(\n",
|
185 |
+
" config.pretrained_model_name_or_path, subfolder=\"tokenizer\",\n",
|
186 |
+
" )\n",
|
187 |
+
"preprocess = transforms.Compose(\n",
|
188 |
+
" [\n",
|
189 |
+
" transforms.Resize((config.image_size, config.image_size)),\n",
|
190 |
+
" transforms.RandomHorizontalFlip(),\n",
|
191 |
+
" transforms.ToTensor(),\n",
|
192 |
+
" transforms.Normalize([.5],[.5]),\n",
|
193 |
+
" ]\n",
|
194 |
+
")\n",
|
195 |
+
"\n",
|
196 |
+
"def tokenize_captions(examples):\n",
|
197 |
+
" captions = examples[\"text\"]\n",
|
198 |
+
" inputs = tokenizer(\n",
|
199 |
+
" captions, max_length=tokenizer.model_max_length, padding=\"max_length\", truncation=True, return_tensors=\"pt\"\n",
|
200 |
+
" )\n",
|
201 |
+
" return inputs.input_ids\n",
|
202 |
+
"\n",
|
203 |
+
"\n",
|
204 |
+
"\n",
|
205 |
+
"def transform(examples):\n",
|
206 |
+
" images = [preprocess(image.convert(\"RGB\")) for image in examples[\"image\"]]\n",
|
207 |
+
" examples[\"pixel_values\"] = images\n",
|
208 |
+
" examples[\"input_ids\"] = tokenize_captions(examples)\n",
|
209 |
+
" return examples"
|
210 |
+
]
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"cell_type": "code",
|
214 |
+
"execution_count": null,
|
215 |
+
"metadata": {
|
216 |
+
"id": "MVNCvm8nIiQd"
|
217 |
+
},
|
218 |
+
"outputs": [],
|
219 |
+
"source": [
|
220 |
+
"def collate_fn(examples):\n",
|
221 |
+
" pixel_values = torch.stack([example[\"pixel_values\"] for example in examples])\n",
|
222 |
+
" pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()\n",
|
223 |
+
" input_ids = torch.stack([example[\"input_ids\"] for example in examples])\n",
|
224 |
+
" return {\"pixel_values\": pixel_values, \"input_ids\": input_ids}\n"
|
225 |
+
]
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"cell_type": "code",
|
229 |
+
"execution_count": null,
|
230 |
+
"metadata": {
|
231 |
+
"id": "43Z-VBpQi5Yt"
|
232 |
+
},
|
233 |
+
"outputs": [],
|
234 |
+
"source": [
|
235 |
+
"def save_model_card(args,repo_id: str,images=None,repo_folder=None):\n",
|
236 |
+
" img_str = \"\"\n",
|
237 |
+
" if images is not None and len(images) > 0:\n",
|
238 |
+
" image_grid = make_grid(images, 1, len(config.validation_prompts))\n",
|
239 |
+
" image_grid.save(os.path.join(repo_folder, \"val_imgs_grid.png\"))\n",
|
240 |
+
" img_str += \"\\n\"\n",
|
241 |
+
" yaml = f\"\"\"\n",
|
242 |
+
"---\n",
|
243 |
+
"license: creativeml-openrail-m\n",
|
244 |
+
"base_model: {config.pretrained_model_name_or_path}\n",
|
245 |
+
"datasets:\n",
|
246 |
+
"- {config.dataset_name}\n",
|
247 |
+
"tags:\n",
|
248 |
+
"- stable-diffusion\n",
|
249 |
+
"- stable-diffusion-diffusers\n",
|
250 |
+
"- text-to-image\n",
|
251 |
+
"- diffusers\n",
|
252 |
+
"inference: true\n",
|
253 |
+
"---\n",
|
254 |
+
" \"\"\"\n",
|
255 |
+
" model_card = f\"\"\"\n",
|
256 |
+
"# Text-to-image finetuning - {repo_id}\n",
|
257 |
+
"\n",
|
258 |
+
"This pipeline was finetuned from **{config.pretrained_model_name_or_path}** on the **{config.dataset_name}** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: {config.validation_prompts}: \\n\n",
|
259 |
+
"{img_str}\n",
|
260 |
+
"\n",
|
261 |
+
"## Pipeline usage\n",
|
262 |
+
"\n",
|
263 |
+
"You can use the pipeline like so:\n",
|
264 |
+
"\n",
|
265 |
+
"```python\n",
|
266 |
+
"from diffusers import DiffusionPipeline\n",
|
267 |
+
"import torch\n",
|
268 |
+
"\n",
|
269 |
+
"pipeline = DiffusionPipeline.from_pretrained(\"{repo_id}\", torch_dtype=torch.float16)\n",
|
270 |
+
"prompt = \"{config.validation_prompts[0]}\"\n",
|
271 |
+
"image = pipeline(prompt).images[0]\n",
|
272 |
+
"image.save(\"my_image.png\")\n",
|
273 |
+
"```\n",
|
274 |
+
"\n",
|
275 |
+
"## Training info\n",
|
276 |
+
"\n",
|
277 |
+
"These are the key hyperparameters used during training:\n",
|
278 |
+
"\n",
|
279 |
+
"* Epochs: {config.num_epochs}\n",
|
280 |
+
"* Learning rate: {config.learning_rate}\n",
|
281 |
+
"* Batch size: {config.train_batch_size}\n",
|
282 |
+
"* Image resolution: {config.image_size}\n",
|
283 |
+
"* Mixed-precision: {config.mixed_precision}\n",
|
284 |
+
"\n",
|
285 |
+
"\"\"\"\n",
|
286 |
+
" with open(os.path.join(repo_folder, \"README.md\"), \"w\") as f:\n",
|
287 |
+
" f.write(yaml + model_card)\n",
|
288 |
+
"\n"
|
289 |
+
]
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"cell_type": "code",
|
293 |
+
"execution_count": null,
|
294 |
+
"metadata": {
|
295 |
+
"id": "VbgnI0pJtsFQ"
|
296 |
+
},
|
297 |
+
"outputs": [],
|
298 |
+
"source": [
|
299 |
+
"def deepspeed_zero_init_disabled_context_manager():\n",
|
300 |
+
" \"\"\"\n",
|
301 |
+
" returns either a context list that includes one that will disable zero.Init or an empty context list\n",
|
302 |
+
" \"\"\"\n",
|
303 |
+
" deepspeed_plugin = AcceleratorState().deepspeed_plugin if accelerate.state.is_initialized() else None\n",
|
304 |
+
" if deepspeed_plugin is None:\n",
|
305 |
+
" return []\n",
|
306 |
+
"\n",
|
307 |
+
" return [deepspeed_plugin.zero3_init_context_manager(enable=False)]"
|
308 |
+
]
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"cell_type": "code",
|
312 |
+
"execution_count": null,
|
313 |
+
"metadata": {
|
314 |
+
"id": "c6162g9pLz5r"
|
315 |
+
},
|
316 |
+
"outputs": [],
|
317 |
+
"source": [
|
318 |
+
"def train_loop(config, unet, vae, noise_scheduler, optimizer, train_dataloader, lr_scheduler):\n",
|
319 |
+
" repo_id = \"TejasNavada/tattoo-diffusion\"\n",
|
320 |
+
"\n",
|
321 |
+
" accelerator = Accelerator(\n",
|
322 |
+
" mixed_precision=config.mixed_precision,\n",
|
323 |
+
" gradient_accumulation_steps=config.gradient_accumulation_steps,\n",
|
324 |
+
" log_with=\"tensorboard\",\n",
|
325 |
+
" project_dir=os.path.join(config.output_dir, \"logs\"),\n",
|
326 |
+
" )\n",
|
327 |
+
" state_dict = lr_scheduler.state_dict()\n",
|
328 |
+
" print(state_dict)\n",
|
329 |
+
" if accelerator.is_main_process:\n",
|
330 |
+
" os.makedirs(config.output_dir,exist_ok=True)\n",
|
331 |
+
" accelerator.init_trackers(\"train_example\")\n",
|
332 |
+
"\n",
|
333 |
+
" unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(\n",
|
334 |
+
" unet, optimizer, train_dataloader, lr_scheduler\n",
|
335 |
+
" )\n",
|
336 |
+
"\n",
|
337 |
+
"\n",
|
338 |
+
" text_encoder.to(accelerator.device, dtype=torch.float16)\n",
|
339 |
+
" vae.to(accelerator.device, dtype=torch.float16)\n",
|
340 |
+
" global_step = 0\n",
|
341 |
+
"\n",
|
342 |
+
" if(True):\n",
|
343 |
+
"\n",
|
344 |
+
" dirs = os.listdir(config.output_dir)\n",
|
345 |
+
" dirs = [d for d in dirs if d.startswith(\"checkpoint\")]\n",
|
346 |
+
" dirs = sorted(dirs, key=lambda x: int(x.split(\"-\")[1]))\n",
|
347 |
+
" path = dirs[-1] if len(dirs) > 0 else None\n",
|
348 |
+
" accelerator.print(f\"Resuming from checkpoint {path}\")\n",
|
349 |
+
" accelerator.load_state(os.path.join(config.output_dir, path))\n",
|
350 |
+
" global_step = int(path.split(\"-\")[1])\n",
|
351 |
+
"\n",
|
352 |
+
" start_epoch = global_step//len(train_dataloader)\n",
|
353 |
+
"\n",
|
354 |
+
" lr_scheduler.load_state_dict(state_dict)\n",
|
355 |
+
" print(lr_scheduler.get_last_lr())\n",
|
356 |
+
"\n",
|
357 |
+
" for epoch in range(start_epoch, config.num_epochs):\n",
|
358 |
+
" unet.train()\n",
|
359 |
+
"\n",
|
360 |
+
" progress_bar = tqdm(total=len(train_dataloader), disable=not accelerator.is_local_main_process)\n",
|
361 |
+
" progress_bar.set_description(f\"Epoch {epoch}\")\n",
|
362 |
+
"\n",
|
363 |
+
" for step, batch in enumerate(train_dataloader):\n",
|
364 |
+
"\n",
|
365 |
+
" # Convert images to latent space\n",
|
366 |
+
" latents = vae.encode(batch[\"pixel_values\"].to(torch.float16)).latent_dist.sample()\n",
|
367 |
+
" latents = latents * vae.config.scaling_factor\n",
|
368 |
+
"\n",
|
369 |
+
" # Sample noise that to add to the latents\n",
|
370 |
+
" noise = torch.randn_like(latents)\n",
|
371 |
+
"\n",
|
372 |
+
" bsz = latents.shape[0]\n",
|
373 |
+
"\n",
|
374 |
+
" # Sample a random timestep for each image\n",
|
375 |
+
" timesteps = torch.randint(\n",
|
376 |
+
" 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device\n",
|
377 |
+
" ).long()\n",
|
378 |
+
" # Add noise to the latents according to the noise magnitude at each timestep\n",
|
379 |
+
" noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)\n",
|
380 |
+
" # Get the text embedding for conditioning\n",
|
381 |
+
" encoder_hidden_states = text_encoder(batch[\"input_ids\"])[0]\n",
|
382 |
+
" # Predict the noise residual and compute loss\n",
|
383 |
+
" with accelerator.accumulate(unet):\n",
|
384 |
+
"\n",
|
385 |
+
" model_pred = unet(noisy_latents,timesteps,encoder_hidden_states).sample\n",
|
386 |
+
"\n",
|
387 |
+
" loss = F.mse_loss(model_pred.float(),noise.float(), reduction=\"mean\")\n",
|
388 |
+
"\n",
|
389 |
+
" # Backpropagate\n",
|
390 |
+
" accelerator.backward(loss)\n",
|
391 |
+
" accelerator.clip_grad_norm_(unet.parameters(),1.0)\n",
|
392 |
+
"\n",
|
393 |
+
" optimizer.step()\n",
|
394 |
+
" lr_scheduler.step()\n",
|
395 |
+
" optimizer.zero_grad()\n",
|
396 |
+
"\n",
|
397 |
+
" progress_bar.update(1)\n",
|
398 |
+
" logs = {\"loss\": loss.detach().item(), \"lr\": lr_scheduler.get_last_lr()[0], \"step\": global_step}\n",
|
399 |
+
" progress_bar.set_postfix(**logs)\n",
|
400 |
+
" accelerator.log(logs, step=global_step)\n",
|
401 |
+
" global_step += 1\n",
|
402 |
+
"\n",
|
403 |
+
" if accelerator.is_main_process:\n",
|
404 |
+
"\n",
|
405 |
+
" if (epoch + 1) % config.save_image_epochs == 0 or epoch == config.num_epochs - 1:\n",
|
406 |
+
" images = evaluate(vae, text_encoder, tokenizer, unet, config, accelerator, epoch)\n",
|
407 |
+
" save_path = os.path.join(config.output_dir, f\"checkpoint-{global_step}\")\n",
|
408 |
+
" accelerator.save_state(save_path)\n",
|
409 |
+
" save_model_card(config, repo_id, images, repo_folder=config.output_dir)\n",
|
410 |
+
" upload_folder(\n",
|
411 |
+
" repo_id=repo_id,\n",
|
412 |
+
" folder_path=save_path,\n",
|
413 |
+
" path_in_repo=f\"checkpoint-{global_step}\",\n",
|
414 |
+
" commit_message=\"Latest Checkpoint\",\n",
|
415 |
+
" ignore_patterns=[\"step_*\", \"epoch_*\"],\n",
|
416 |
+
" )\n",
|
417 |
+
" upload_folder(\n",
|
418 |
+
" repo_id=repo_id,\n",
|
419 |
+
" folder_path=os.path.join(config.output_dir, \"samples\"),\n",
|
420 |
+
" path_in_repo=\"samples\",\n",
|
421 |
+
" commit_message=\"new samples\",\n",
|
422 |
+
" ignore_patterns=[\"step_*\", \"epoch_*\"],\n",
|
423 |
+
" )\n",
|
424 |
+
" upload_file(\n",
|
425 |
+
" path_or_fileobj=os.path.join(config.output_dir, \"README.md\"),\n",
|
426 |
+
" path_in_repo=\"README.md\",\n",
|
427 |
+
" repo_id=repo_id,\n",
|
428 |
+
" )\n",
|
429 |
+
"\n",
|
430 |
+
" unet = accelerator.unwrap_model(unet)\n",
|
431 |
+
" pipeline = StableDiffusionPipeline.from_pretrained(\n",
|
432 |
+
" config.pretrained_model_name_or_path,\n",
|
433 |
+
" text_encoder=text_encoder,\n",
|
434 |
+
" vae=vae,\n",
|
435 |
+
" unet=unet,\n",
|
436 |
+
" )\n",
|
437 |
+
" pipeline.save_pretrained(config.output_dir)\n",
|
438 |
+
" accelerator.end_training()\n",
|
439 |
+
"\n",
|
440 |
+
"\n",
|
441 |
+
"\n",
|
442 |
+
"\n",
|
443 |
+
"\n",
|
444 |
+
"\n",
|
445 |
+
"\n",
|
446 |
+
"\n",
|
447 |
+
"\n"
|
448 |
+
]
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"cell_type": "code",
|
452 |
+
"execution_count": null,
|
453 |
+
"metadata": {
|
454 |
+
"id": "L21-Cx7NrghU"
|
455 |
+
},
|
456 |
+
"outputs": [],
|
457 |
+
"source": [
|
458 |
+
"config.validation_prompts[0]"
|
459 |
+
]
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"cell_type": "code",
|
463 |
+
"execution_count": null,
|
464 |
+
"metadata": {
|
465 |
+
"id": "ofrTlboPpwX9"
|
466 |
+
},
|
467 |
+
"outputs": [],
|
468 |
+
"source": [
|
469 |
+
"from transformers.utils.hub import huggingface_hub\n",
|
470 |
+
"huggingface_hub.login(config.token, add_to_git_credential=True, new_session=True, write_permission=True)"
|
471 |
+
]
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"cell_type": "code",
|
475 |
+
"execution_count": null,
|
476 |
+
"metadata": {
|
477 |
+
"id": "3o2O7BkjmNsB"
|
478 |
+
},
|
479 |
+
"outputs": [],
|
480 |
+
"source": [
|
481 |
+
"dataset.set_transform(transform)\n",
|
482 |
+
"train_dataloader = torch.utils.data.DataLoader(dataset, collate_fn=collate_fn, batch_size=config.train_batch_size, shuffle=True)\n",
|
483 |
+
"noise_scheduler = DDPMScheduler.from_pretrained(config.pretrained_model_name_or_path, subfolder=\"scheduler\")\n",
|
484 |
+
"with ContextManagers(deepspeed_zero_init_disabled_context_manager()):\n",
|
485 |
+
" text_encoder = CLIPTextModel.from_pretrained(\n",
|
486 |
+
" config.pretrained_model_name_or_path, subfolder=\"text_encoder\",\n",
|
487 |
+
" )\n",
|
488 |
+
" vae = AutoencoderKL.from_pretrained(\n",
|
489 |
+
" config.pretrained_model_name_or_path, subfolder=\"vae\",\n",
|
490 |
+
" )\n",
|
491 |
+
"\n",
|
492 |
+
"\n",
|
493 |
+
"\n",
|
494 |
+
"unet = UNet2DConditionModel(\n",
|
495 |
+
" sample_size=config.image_size//8,\n",
|
496 |
+
" cross_attention_dim = 768,\n",
|
497 |
+
" )\n",
|
498 |
+
"\n",
|
499 |
+
"vae.requires_grad_(False)\n",
|
500 |
+
"text_encoder.requires_grad_(False)\n",
|
501 |
+
"optimizer = bnb.optim.AdamW8bit(\n",
|
502 |
+
" unet.parameters(),\n",
|
503 |
+
" lr=config.learning_rate,\n",
|
504 |
+
" )\n",
|
505 |
+
"lr_scheduler = get_scheduler(\n",
|
506 |
+
" config.lr_scheduler,\n",
|
507 |
+
" optimizer=optimizer,\n",
|
508 |
+
" num_warmup_steps=config.lr_warmup_steps,\n",
|
509 |
+
" num_training_steps=(len(train_dataloader)*config.num_epochs),\n",
|
510 |
+
")\n",
|
511 |
+
"\n",
|
512 |
+
"\n",
|
513 |
+
"args = (config, unet, vae, noise_scheduler, optimizer, train_dataloader, lr_scheduler)\n",
|
514 |
+
"\n",
|
515 |
+
"\n"
|
516 |
+
]
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"cell_type": "code",
|
520 |
+
"source": [
|
521 |
+
"notebook_launcher(train_loop, args, num_processes=1)"
|
522 |
+
],
|
523 |
+
"metadata": {
|
524 |
+
"id": "GCR1zr9EKLyw"
|
525 |
+
},
|
526 |
+
"execution_count": null,
|
527 |
+
"outputs": []
|
528 |
+
}
|
529 |
+
],
|
530 |
+
"metadata": {
|
531 |
+
"accelerator": "GPU",
|
532 |
+
"colab": {
|
533 |
+
"provenance": [],
|
534 |
+
"gpuType": "T4"
|
535 |
+
},
|
536 |
+
"kernelspec": {
|
537 |
+
"display_name": "Python 3",
|
538 |
+
"name": "python3"
|
539 |
+
},
|
540 |
+
"language_info": {
|
541 |
+
"name": "python"
|
542 |
+
}
|
543 |
+
},
|
544 |
+
"nbformat": 4,
|
545 |
+
"nbformat_minor": 0
|
546 |
+
}
|