HunyuanDiT
Diffusers
Safetensors
English
Chinese
yestinl commited on
Commit
32dbe63
·
1 Parent(s): 1964925

remove unused files

Browse files
Files changed (36) hide show
  1. dialoggen/__pycache__/dialoggen_demo.cpython-39.pyc +0 -0
  2. dialoggen/dialoggen_demo.py +0 -189
  3. dialoggen/images/demo1.jpeg +0 -0
  4. dialoggen/images/demo2.jpeg +0 -0
  5. dialoggen/llava/__init__.py +0 -1
  6. dialoggen/llava/__pycache__/__init__.cpython-39.pyc +0 -0
  7. dialoggen/llava/__pycache__/constants.cpython-39.pyc +0 -0
  8. dialoggen/llava/__pycache__/conversation.cpython-39.pyc +0 -0
  9. dialoggen/llava/__pycache__/mm_utils.cpython-39.pyc +0 -0
  10. dialoggen/llava/__pycache__/utils.cpython-39.pyc +0 -0
  11. dialoggen/llava/constants.py +0 -13
  12. dialoggen/llava/conversation.py +0 -396
  13. dialoggen/llava/mm_utils.py +0 -247
  14. dialoggen/llava/model/__init__.py +0 -6
  15. dialoggen/llava/model/__pycache__/__init__.cpython-39.pyc +0 -0
  16. dialoggen/llava/model/__pycache__/builder.cpython-39.pyc +0 -0
  17. dialoggen/llava/model/__pycache__/llava_arch.cpython-39.pyc +0 -0
  18. dialoggen/llava/model/apply_delta.py +0 -48
  19. dialoggen/llava/model/builder.py +0 -166
  20. dialoggen/llava/model/consolidate.py +0 -29
  21. dialoggen/llava/model/language_model/__pycache__/llava_llama.cpython-39.pyc +0 -0
  22. dialoggen/llava/model/language_model/__pycache__/llava_mistral.cpython-39.pyc +0 -0
  23. dialoggen/llava/model/language_model/__pycache__/llava_mpt.cpython-39.pyc +0 -0
  24. dialoggen/llava/model/language_model/llava_llama.py +0 -158
  25. dialoggen/llava/model/language_model/llava_mistral.py +0 -158
  26. dialoggen/llava/model/language_model/llava_mpt.py +0 -97
  27. dialoggen/llava/model/llava_arch.py +0 -368
  28. dialoggen/llava/model/make_delta.py +0 -52
  29. dialoggen/llava/model/multimodal_encoder/__pycache__/builder.cpython-39.pyc +0 -0
  30. dialoggen/llava/model/multimodal_encoder/__pycache__/clip_encoder.cpython-39.pyc +0 -0
  31. dialoggen/llava/model/multimodal_encoder/builder.py +0 -11
  32. dialoggen/llava/model/multimodal_encoder/clip_encoder.py +0 -88
  33. dialoggen/llava/model/multimodal_projector/__pycache__/builder.cpython-39.pyc +0 -0
  34. dialoggen/llava/model/multimodal_projector/builder.py +0 -51
  35. dialoggen/llava/model/utils.py +0 -20
  36. dialoggen/llava/utils.py +0 -126
dialoggen/__pycache__/dialoggen_demo.cpython-39.pyc DELETED
Binary file (4.86 kB)
 
dialoggen/dialoggen_demo.py DELETED
@@ -1,189 +0,0 @@
1
- import argparse
2
- import torch
3
- import sys
4
- import os
5
- # 添加当前命令行运行的目录到 sys.path
6
- sys.path.append(os.getcwd()+"/dialoggen")
7
-
8
-
9
- from llava.constants import (
10
- IMAGE_TOKEN_INDEX,
11
- DEFAULT_IMAGE_TOKEN,
12
- DEFAULT_IM_START_TOKEN,
13
- DEFAULT_IM_END_TOKEN,
14
- IMAGE_PLACEHOLDER,
15
- )
16
- from llava.conversation import conv_templates, SeparatorStyle
17
- from llava.model.builder import load_pretrained_model
18
- from llava.utils import disable_torch_init
19
- from llava.mm_utils import (
20
- process_images,
21
- tokenizer_image_token,
22
- get_model_name_from_path,
23
- )
24
-
25
- import requests
26
- from PIL import Image
27
- from io import BytesIO
28
- import re
29
-
30
-
31
- def image_parser(image_file, sep=','):
32
- out = image_file.split(sep)
33
- return out
34
-
35
-
36
- def load_image(image_file):
37
- if image_file.startswith("http") or image_file.startswith("https"):
38
- response = requests.get(image_file)
39
- image = Image.open(BytesIO(response.content)).convert("RGB")
40
- else:
41
- image = Image.open(image_file).convert("RGB")
42
- return image
43
-
44
-
45
- def load_images(image_files):
46
- out = []
47
- for image_file in image_files:
48
- image = load_image(image_file)
49
- out.append(image)
50
- return out
51
-
52
-
53
- def init_dialoggen_model(model_path, model_base=None, load_4bit=False):
54
- model_name = get_model_name_from_path(model_path)
55
- tokenizer, model, image_processor, context_len = load_pretrained_model(
56
- model_path, model_base, model_name, llava_type_model=True, load_4bit=load_4bit)
57
- return {"tokenizer": tokenizer,
58
- "model": model,
59
- "image_processor": image_processor}
60
-
61
-
62
- def eval_model(models,
63
- query='详细描述一下这张图片',
64
- image_file=None,
65
- sep=',',
66
- temperature=0.2,
67
- top_p=None,
68
- num_beams=1,
69
- max_new_tokens=512,
70
- return_history=False,
71
- history=None,
72
- skip_special=False
73
- ):
74
- # Model
75
- disable_torch_init()
76
-
77
- qs = query
78
- image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
79
- if IMAGE_PLACEHOLDER in qs:
80
- if models["model"].config.mm_use_im_start_end:
81
- qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs)
82
- else:
83
- qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs)
84
- else:
85
- if models["model"].config.mm_use_im_start_end:
86
- qs = image_token_se + "\n" + qs
87
- else:
88
- qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
89
-
90
- if not history:
91
- conv = conv_templates['llava_v1'].copy()
92
- else:
93
- conv = history
94
-
95
- if skip_special:
96
- conv.append_message(conv.roles[0], query)
97
- else:
98
- conv.append_message(conv.roles[0], qs)
99
- conv.append_message(conv.roles[1], None)
100
- prompt = conv.get_prompt()
101
-
102
- if image_file is not None:
103
- image_files = image_parser(image_file, sep=sep)
104
- images = load_images(image_files)
105
- image_sizes = [x.size for x in images]
106
- images_tensor = process_images(
107
- images,
108
- models["image_processor"],
109
- models["model"].config
110
- ).to(models["model"].device, dtype=torch.float16)
111
- else:
112
- # fomatted input as training data
113
- image_sizes = [(1024, 1024)]
114
- images_tensor = torch.zeros(1, 5, 3, models["image_processor"].crop_size["height"], models["image_processor"].crop_size["width"])
115
- images_tensor = images_tensor.to(models["model"].device, dtype=torch.float16)
116
-
117
- input_ids = (
118
- tokenizer_image_token(prompt, models["tokenizer"], IMAGE_TOKEN_INDEX, return_tensors="pt")
119
- .unsqueeze(0)
120
- .cuda()
121
- )
122
- with torch.inference_mode():
123
- output_ids = models["model"].generate(
124
- input_ids,
125
- images=images_tensor,
126
- image_sizes=image_sizes,
127
- do_sample=True if temperature > 0 else False,
128
- temperature=temperature,
129
- top_p=top_p,
130
- num_beams=num_beams,
131
- max_new_tokens=max_new_tokens,
132
- use_cache=True,
133
- )
134
-
135
- outputs = models["tokenizer"].batch_decode(output_ids, skip_special_tokens=True)[0].strip()
136
- if return_history:
137
- return outputs, conv
138
- return outputs
139
-
140
-
141
- def remove_prefix(text):
142
- if text.startswith("<画图>"):
143
- return text[len("<画图>"):], True
144
- elif text.startswith("对不起"):
145
- # 拒绝画图
146
- return "", False
147
- else:
148
- return text, True
149
-
150
-
151
- class DialogGen(object):
152
- def __init__(self, model_path, load_4bit=False):
153
- self.models = init_dialoggen_model(model_path, load_4bit=load_4bit)
154
- self.query_template = "请先判断用户的意图,若为画图则在输出前加入<画图>:{}"
155
-
156
- def __call__(self, prompt, return_history=False, history=None, skip_special=False):
157
- enhanced_prompt = eval_model(
158
- models=self.models,
159
- query=self.query_template.format(prompt),
160
- image_file=None,
161
- return_history=return_history,
162
- history=history,
163
- skip_special=skip_special
164
- )
165
- if return_history:
166
- return enhanced_prompt
167
-
168
- enhanced_prompt, compliance = remove_prefix(enhanced_prompt)
169
- if not compliance:
170
- return False, ""
171
- return True, enhanced_prompt
172
-
173
-
174
- if __name__ == "__main__":
175
- parser = argparse.ArgumentParser()
176
- parser.add_argument('--model_path', type=str, default='./ckpts/dialoggen')
177
- parser.add_argument('--prompt', type=str, default='画一只小猫')
178
- parser.add_argument('--image_file', type=str, default=None) # 'images/demo1.jpeg'
179
- args = parser.parse_args()
180
-
181
- query = f"请先判断用户的意图,若为画图则在输出前加入<画图>:{args.prompt}"
182
-
183
- models = init_dialoggen_model(args.model_path)
184
-
185
- res = eval_model(models,
186
- query=query,
187
- image_file=args.image_file,
188
- )
189
- print(res)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dialoggen/images/demo1.jpeg DELETED
Binary file (106 kB)
 
dialoggen/images/demo2.jpeg DELETED
Binary file (70.3 kB)
 
dialoggen/llava/__init__.py DELETED
@@ -1 +0,0 @@
1
- from .model import LlavaLlamaForCausalLM
 
 
dialoggen/llava/__pycache__/__init__.cpython-39.pyc DELETED
Binary file (229 Bytes)
 
dialoggen/llava/__pycache__/constants.cpython-39.pyc DELETED
Binary file (537 Bytes)
 
dialoggen/llava/__pycache__/conversation.cpython-39.pyc DELETED
Binary file (10.5 kB)
 
dialoggen/llava/__pycache__/mm_utils.cpython-39.pyc DELETED
Binary file (8.78 kB)
 
dialoggen/llava/__pycache__/utils.cpython-39.pyc DELETED
Binary file (4.06 kB)
 
dialoggen/llava/constants.py DELETED
@@ -1,13 +0,0 @@
1
- CONTROLLER_HEART_BEAT_EXPIRATION = 30
2
- WORKER_HEART_BEAT_INTERVAL = 15
3
-
4
- LOGDIR = "."
5
-
6
- # Model Constants
7
- IGNORE_INDEX = -100
8
- IMAGE_TOKEN_INDEX = -200
9
- DEFAULT_IMAGE_TOKEN = "<image>"
10
- DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
11
- DEFAULT_IM_START_TOKEN = "<im_start>"
12
- DEFAULT_IM_END_TOKEN = "<im_end>"
13
- IMAGE_PLACEHOLDER = "<image-placeholder>"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dialoggen/llava/conversation.py DELETED
@@ -1,396 +0,0 @@
1
- import dataclasses
2
- from enum import auto, Enum
3
- from typing import List, Tuple
4
- import base64
5
- from io import BytesIO
6
- from PIL import Image
7
-
8
-
9
- class SeparatorStyle(Enum):
10
- """Different separator style."""
11
- SINGLE = auto()
12
- TWO = auto()
13
- MPT = auto()
14
- PLAIN = auto()
15
- LLAMA_2 = auto()
16
-
17
-
18
- @dataclasses.dataclass
19
- class Conversation:
20
- """A class that keeps all conversation history."""
21
- system: str
22
- roles: List[str]
23
- messages: List[List[str]]
24
- offset: int
25
- sep_style: SeparatorStyle = SeparatorStyle.SINGLE
26
- sep: str = "###"
27
- sep2: str = None
28
- version: str = "Unknown"
29
-
30
- skip_next: bool = False
31
-
32
- def get_prompt(self):
33
- messages = self.messages
34
- if len(messages) > 0 and type(messages[0][1]) is tuple:
35
- messages = self.messages.copy()
36
- init_role, init_msg = messages[0].copy()
37
- init_msg = init_msg[0].replace("<image>", "").strip()
38
- if 'mmtag' in self.version:
39
- messages[0] = (init_role, init_msg)
40
- messages.insert(0, (self.roles[0], "<Image><image></Image>"))
41
- messages.insert(1, (self.roles[1], "Received."))
42
- else:
43
- messages[0] = (init_role, "<image>\n" + init_msg)
44
-
45
- if self.sep_style == SeparatorStyle.SINGLE:
46
- ret = self.system + self.sep
47
- for role, message in messages:
48
- if message:
49
- if type(message) is tuple:
50
- message, _, _ = message
51
- ret += role + ": " + message + self.sep
52
- else:
53
- ret += role + ":"
54
- elif self.sep_style == SeparatorStyle.TWO:
55
- seps = [self.sep, self.sep2]
56
- ret = self.system + seps[0]
57
- for i, (role, message) in enumerate(messages):
58
- if message:
59
- if type(message) is tuple:
60
- message, _, _ = message
61
- ret += role + ": " + message + seps[i % 2]
62
- else:
63
- ret += role + ":"
64
- elif self.sep_style == SeparatorStyle.MPT:
65
- ret = self.system + self.sep
66
- for role, message in messages:
67
- if message:
68
- if type(message) is tuple:
69
- message, _, _ = message
70
- ret += role + message + self.sep
71
- else:
72
- ret += role
73
- elif self.sep_style == SeparatorStyle.LLAMA_2:
74
- wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n" if len(msg) > 0 else msg
75
- wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
76
- ret = ""
77
-
78
- for i, (role, message) in enumerate(messages):
79
- if i == 0:
80
- assert message, "first message should not be none"
81
- assert role == self.roles[0], "first message should come from user"
82
- if message:
83
- if type(message) is tuple:
84
- message, _, _ = message
85
- if i == 0: message = wrap_sys(self.system) + message
86
- if i % 2 == 0:
87
- message = wrap_inst(message)
88
- ret += self.sep + message
89
- else:
90
- ret += " " + message + " " + self.sep2
91
- else:
92
- ret += ""
93
- ret = ret.lstrip(self.sep)
94
- elif self.sep_style == SeparatorStyle.PLAIN:
95
- seps = [self.sep, self.sep2]
96
- ret = self.system
97
- for i, (role, message) in enumerate(messages):
98
- if message:
99
- if type(message) is tuple:
100
- message, _, _ = message
101
- ret += message + seps[i % 2]
102
- else:
103
- ret += ""
104
- else:
105
- raise ValueError(f"Invalid style: {self.sep_style}")
106
-
107
- return ret
108
-
109
- def append_message(self, role, message):
110
- self.messages.append([role, message])
111
-
112
- def process_image(self, image, image_process_mode, return_pil=False, image_format='PNG', max_len=1344, min_len=672):
113
- if image_process_mode == "Pad":
114
- def expand2square(pil_img, background_color=(122, 116, 104)):
115
- width, height = pil_img.size
116
- if width == height:
117
- return pil_img
118
- elif width > height:
119
- result = Image.new(pil_img.mode, (width, width), background_color)
120
- result.paste(pil_img, (0, (width - height) // 2))
121
- return result
122
- else:
123
- result = Image.new(pil_img.mode, (height, height), background_color)
124
- result.paste(pil_img, ((height - width) // 2, 0))
125
- return result
126
- image = expand2square(image)
127
- elif image_process_mode in ["Default", "Crop"]:
128
- pass
129
- elif image_process_mode == "Resize":
130
- image = image.resize((336, 336))
131
- else:
132
- raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
133
- if max(image.size) > max_len:
134
- max_hw, min_hw = max(image.size), min(image.size)
135
- aspect_ratio = max_hw / min_hw
136
- shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
137
- longest_edge = int(shortest_edge * aspect_ratio)
138
- W, H = image.size
139
- if H > W:
140
- H, W = longest_edge, shortest_edge
141
- else:
142
- H, W = shortest_edge, longest_edge
143
- image = image.resize((W, H))
144
- if return_pil:
145
- return image
146
- else:
147
- buffered = BytesIO()
148
- image.save(buffered, format=image_format)
149
- img_b64_str = base64.b64encode(buffered.getvalue()).decode()
150
- return img_b64_str
151
-
152
- def get_images(self, return_pil=False):
153
- images = []
154
- for i, (role, msg) in enumerate(self.messages[self.offset:]):
155
- if i % 2 == 0:
156
- if type(msg) is tuple:
157
- msg, image, image_process_mode = msg
158
- image = self.process_image(image, image_process_mode, return_pil=return_pil)
159
- images.append(image)
160
- return images
161
-
162
- def to_gradio_chatbot(self):
163
- ret = []
164
- for i, (role, msg) in enumerate(self.messages[self.offset:]):
165
- if i % 2 == 0:
166
- if type(msg) is tuple:
167
- msg, image, image_process_mode = msg
168
- img_b64_str = self.process_image(
169
- image, "Default", return_pil=False,
170
- image_format='JPEG')
171
- img_str = f'<img src="data:image/jpeg;base64,{img_b64_str}" alt="user upload image" />'
172
- msg = img_str + msg.replace('<image>', '').strip()
173
- ret.append([msg, None])
174
- else:
175
- ret.append([msg, None])
176
- else:
177
- ret[-1][-1] = msg
178
- return ret
179
-
180
- def copy(self):
181
- return Conversation(
182
- system=self.system,
183
- roles=self.roles,
184
- messages=[[x, y] for x, y in self.messages],
185
- offset=self.offset,
186
- sep_style=self.sep_style,
187
- sep=self.sep,
188
- sep2=self.sep2,
189
- version=self.version)
190
-
191
- def dict(self):
192
- if len(self.get_images()) > 0:
193
- return {
194
- "system": self.system,
195
- "roles": self.roles,
196
- "messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
197
- "offset": self.offset,
198
- "sep": self.sep,
199
- "sep2": self.sep2,
200
- }
201
- return {
202
- "system": self.system,
203
- "roles": self.roles,
204
- "messages": self.messages,
205
- "offset": self.offset,
206
- "sep": self.sep,
207
- "sep2": self.sep2,
208
- }
209
-
210
-
211
- conv_vicuna_v0 = Conversation(
212
- system="A chat between a curious human and an artificial intelligence assistant. "
213
- "The assistant gives helpful, detailed, and polite answers to the human's questions.",
214
- roles=("Human", "Assistant"),
215
- messages=(
216
- ("Human", "What are the key differences between renewable and non-renewable energy sources?"),
217
- ("Assistant",
218
- "Renewable energy sources are those that can be replenished naturally in a relatively "
219
- "short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
220
- "Non-renewable energy sources, on the other hand, are finite and will eventually be "
221
- "depleted, such as coal, oil, and natural gas. Here are some key differences between "
222
- "renewable and non-renewable energy sources:\n"
223
- "1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
224
- "energy sources are finite and will eventually run out.\n"
225
- "2. Environmental impact: Renewable energy sources have a much lower environmental impact "
226
- "than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
227
- "and other negative effects.\n"
228
- "3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
229
- "have lower operational costs than non-renewable sources.\n"
230
- "4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
231
- "locations than non-renewable sources.\n"
232
- "5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
233
- "situations and needs, while non-renewable sources are more rigid and inflexible.\n"
234
- "6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
235
- "non-renewable sources are not, and their depletion can lead to economic and social instability.\n")
236
- ),
237
- offset=2,
238
- sep_style=SeparatorStyle.SINGLE,
239
- sep="###",
240
- )
241
-
242
- conv_vicuna_v1 = Conversation(
243
- system="A chat between a curious user and an artificial intelligence assistant. "
244
- "The assistant gives helpful, detailed, and polite answers to the user's questions.",
245
- roles=("USER", "ASSISTANT"),
246
- version="v1",
247
- messages=(),
248
- offset=0,
249
- sep_style=SeparatorStyle.TWO,
250
- sep=" ",
251
- sep2="</s>",
252
- )
253
-
254
- conv_llama_2 = Conversation(
255
- system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
256
-
257
- If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""",
258
- roles=("USER", "ASSISTANT"),
259
- version="llama_v2",
260
- messages=(),
261
- offset=0,
262
- sep_style=SeparatorStyle.LLAMA_2,
263
- sep="<s>",
264
- sep2="</s>",
265
- )
266
-
267
- conv_llava_llama_2 = Conversation(
268
- system="You are a helpful language and vision assistant. "
269
- "You are able to understand the visual content that the user provides, "
270
- "and assist the user with a variety of tasks using natural language.",
271
- roles=("USER", "ASSISTANT"),
272
- version="llama_v2",
273
- messages=(),
274
- offset=0,
275
- sep_style=SeparatorStyle.LLAMA_2,
276
- sep="<s>",
277
- sep2="</s>",
278
- )
279
-
280
- conv_mpt = Conversation(
281
- system="""<|im_start|>system
282
- A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
283
- roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
284
- version="mpt",
285
- messages=(),
286
- offset=0,
287
- sep_style=SeparatorStyle.MPT,
288
- sep="<|im_end|>",
289
- )
290
-
291
- conv_llava_plain = Conversation(
292
- system="",
293
- roles=("", ""),
294
- messages=(
295
- ),
296
- offset=0,
297
- sep_style=SeparatorStyle.PLAIN,
298
- sep="\n",
299
- )
300
-
301
- conv_llava_v0 = Conversation(
302
- system="A chat between a curious human and an artificial intelligence assistant. "
303
- "The assistant gives helpful, detailed, and polite answers to the human's questions.",
304
- roles=("Human", "Assistant"),
305
- messages=(
306
- ),
307
- offset=0,
308
- sep_style=SeparatorStyle.SINGLE,
309
- sep="###",
310
- )
311
-
312
- conv_llava_v0_mmtag = Conversation(
313
- system="A chat between a curious user and an artificial intelligence assistant. "
314
- "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
315
- "The visual content will be provided with the following format: <Image>visual content</Image>.",
316
- roles=("Human", "Assistant"),
317
- messages=(
318
- ),
319
- offset=0,
320
- sep_style=SeparatorStyle.SINGLE,
321
- sep="###",
322
- version="v0_mmtag",
323
- )
324
-
325
- conv_llava_v1 = Conversation(
326
- system="A chat between a curious human and an artificial intelligence assistant. "
327
- "The assistant gives helpful, detailed, and polite answers to the human's questions.",
328
- roles=("USER", "ASSISTANT"),
329
- version="v1",
330
- messages=(),
331
- offset=0,
332
- sep_style=SeparatorStyle.TWO,
333
- sep=" ",
334
- sep2="</s>",
335
- )
336
-
337
- conv_llava_v1_mmtag = Conversation(
338
- system="A chat between a curious user and an artificial intelligence assistant. "
339
- "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
340
- "The visual content will be provided with the following format: <Image>visual content</Image>.",
341
- roles=("USER", "ASSISTANT"),
342
- messages=(),
343
- offset=0,
344
- sep_style=SeparatorStyle.TWO,
345
- sep=" ",
346
- sep2="</s>",
347
- version="v1_mmtag",
348
- )
349
-
350
- conv_mistral_instruct = Conversation(
351
- system="",
352
- roles=("USER", "ASSISTANT"),
353
- version="llama_v2",
354
- messages=(),
355
- offset=0,
356
- sep_style=SeparatorStyle.LLAMA_2,
357
- sep="",
358
- sep2="</s>",
359
- )
360
-
361
- conv_chatml_direct = Conversation(
362
- system="""<|im_start|>system
363
- Answer the questions.""",
364
- roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
365
- version="mpt",
366
- messages=(),
367
- offset=0,
368
- sep_style=SeparatorStyle.MPT,
369
- sep="<|im_end|>",
370
- )
371
-
372
- default_conversation = conv_vicuna_v1
373
- conv_templates = {
374
- "default": conv_vicuna_v0,
375
- "v0": conv_vicuna_v0,
376
- "v1": conv_vicuna_v1,
377
- "vicuna_v1": conv_vicuna_v1,
378
- "llama_2": conv_llama_2,
379
- "mistral_instruct": conv_mistral_instruct,
380
- "chatml_direct": conv_chatml_direct,
381
- "mistral_direct": conv_chatml_direct,
382
-
383
- "plain": conv_llava_plain,
384
- "v0_plain": conv_llava_plain,
385
- "llava_v0": conv_llava_v0,
386
- "v0_mmtag": conv_llava_v0_mmtag,
387
- "llava_v1": conv_llava_v1,
388
- "v1_mmtag": conv_llava_v1_mmtag,
389
- "llava_llama_2": conv_llava_llama_2,
390
-
391
- "mpt": conv_mpt,
392
- }
393
-
394
-
395
- if __name__ == "__main__":
396
- print(default_conversation.get_prompt())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dialoggen/llava/mm_utils.py DELETED
@@ -1,247 +0,0 @@
1
- from PIL import Image
2
- from io import BytesIO
3
- import base64
4
- import torch
5
- import math
6
- import ast
7
-
8
- from transformers import StoppingCriteria
9
- from llava.constants import IMAGE_TOKEN_INDEX
10
-
11
-
12
- def select_best_resolution(original_size, possible_resolutions):
13
- """
14
- Selects the best resolution from a list of possible resolutions based on the original size.
15
-
16
- Args:
17
- original_size (tuple): The original size of the image in the format (width, height).
18
- possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
19
-
20
- Returns:
21
- tuple: The best fit resolution in the format (width, height).
22
- """
23
- original_width, original_height = original_size
24
- best_fit = None
25
- max_effective_resolution = 0
26
- min_wasted_resolution = float('inf')
27
-
28
- for width, height in possible_resolutions:
29
- scale = min(width / original_width, height / original_height)
30
- downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
31
- effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
32
- wasted_resolution = (width * height) - effective_resolution
33
-
34
- if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
35
- max_effective_resolution = effective_resolution
36
- min_wasted_resolution = wasted_resolution
37
- best_fit = (width, height)
38
-
39
- return best_fit
40
-
41
-
42
- def resize_and_pad_image(image, target_resolution):
43
- """
44
- Resize and pad an image to a target resolution while maintaining aspect ratio.
45
-
46
- Args:
47
- image (PIL.Image.Image): The input image.
48
- target_resolution (tuple): The target resolution (width, height) of the image.
49
-
50
- Returns:
51
- PIL.Image.Image: The resized and padded image.
52
- """
53
- original_width, original_height = image.size
54
- target_width, target_height = target_resolution
55
-
56
- scale_w = target_width / original_width
57
- scale_h = target_height / original_height
58
-
59
- if scale_w < scale_h:
60
- new_width = target_width
61
- new_height = min(math.ceil(original_height * scale_w), target_height)
62
- else:
63
- new_height = target_height
64
- new_width = min(math.ceil(original_width * scale_h), target_width)
65
-
66
- # Resize the image
67
- resized_image = image.resize((new_width, new_height))
68
-
69
- new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0))
70
- paste_x = (target_width - new_width) // 2
71
- paste_y = (target_height - new_height) // 2
72
- new_image.paste(resized_image, (paste_x, paste_y))
73
-
74
- return new_image
75
-
76
-
77
- def divide_to_patches(image, patch_size):
78
- """
79
- Divides an image into patches of a specified size.
80
-
81
- Args:
82
- image (PIL.Image.Image): The input image.
83
- patch_size (int): The size of each patch.
84
-
85
- Returns:
86
- list: A list of PIL.Image.Image objects representing the patches.
87
- """
88
- patches = []
89
- width, height = image.size
90
- for i in range(0, height, patch_size):
91
- for j in range(0, width, patch_size):
92
- box = (j, i, j + patch_size, i + patch_size)
93
- patch = image.crop(box)
94
- patches.append(patch)
95
-
96
- return patches
97
-
98
-
99
- def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
100
- """
101
- Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
102
-
103
- Args:
104
- image_size (tuple): The size of the input image in the format (width, height).
105
- grid_pinpoints (str): A string representation of a list of possible resolutions.
106
- patch_size (int): The size of each image patch.
107
-
108
- Returns:
109
- tuple: The shape of the image patch grid in the format (width, height).
110
- """
111
- if type(grid_pinpoints) is list:
112
- possible_resolutions = grid_pinpoints
113
- else:
114
- possible_resolutions = ast.literal_eval(grid_pinpoints)
115
- width, height = select_best_resolution(image_size, possible_resolutions)
116
- return width // patch_size, height // patch_size
117
-
118
-
119
- def process_anyres_image(image, processor, grid_pinpoints):
120
- """
121
- Process an image with variable resolutions.
122
-
123
- Args:
124
- image (PIL.Image.Image): The input image to be processed.
125
- processor: The image processor object.
126
- grid_pinpoints (str): A string representation of a list of possible resolutions.
127
-
128
- Returns:
129
- torch.Tensor: A tensor containing the processed image patches.
130
- """
131
- if type(grid_pinpoints) is list:
132
- possible_resolutions = grid_pinpoints
133
- else:
134
- possible_resolutions = ast.literal_eval(grid_pinpoints)
135
- best_resolution = select_best_resolution(image.size, possible_resolutions)
136
- image_padded = resize_and_pad_image(image, best_resolution)
137
-
138
- patches = divide_to_patches(image_padded, processor.crop_size['height'])
139
-
140
- image_original_resize = image.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
141
-
142
- image_patches = [image_original_resize] + patches
143
- image_patches = [processor.preprocess(image_patch, return_tensors='pt')['pixel_values'][0]
144
- for image_patch in image_patches]
145
- return torch.stack(image_patches, dim=0)
146
-
147
-
148
- def load_image_from_base64(image):
149
- return Image.open(BytesIO(base64.b64decode(image)))
150
-
151
-
152
- def expand2square(pil_img, background_color):
153
- width, height = pil_img.size
154
- if width == height:
155
- return pil_img
156
- elif width > height:
157
- result = Image.new(pil_img.mode, (width, width), background_color)
158
- result.paste(pil_img, (0, (width - height) // 2))
159
- return result
160
- else:
161
- result = Image.new(pil_img.mode, (height, height), background_color)
162
- result.paste(pil_img, ((height - width) // 2, 0))
163
- return result
164
-
165
-
166
- def process_images(images, image_processor, model_cfg):
167
- image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
168
- new_images = []
169
- if image_aspect_ratio == 'pad':
170
- for image in images:
171
- image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
172
- image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
173
- new_images.append(image)
174
- elif image_aspect_ratio == "anyres":
175
- for image in images:
176
- image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints)
177
- new_images.append(image)
178
- else:
179
- return image_processor(images, return_tensors='pt')['pixel_values']
180
- if all(x.shape == new_images[0].shape for x in new_images):
181
- new_images = torch.stack(new_images, dim=0)
182
- return new_images
183
-
184
-
185
- def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
186
- prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
187
-
188
- def insert_separator(X, sep):
189
- return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
190
-
191
- input_ids = []
192
- offset = 0
193
- if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
194
- offset = 1
195
- input_ids.append(prompt_chunks[0][0])
196
-
197
- for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
198
- input_ids.extend(x[offset:])
199
-
200
- if return_tensors is not None:
201
- if return_tensors == 'pt':
202
- return torch.tensor(input_ids, dtype=torch.long)
203
- raise ValueError(f'Unsupported tensor type: {return_tensors}')
204
- return input_ids
205
-
206
-
207
- def get_model_name_from_path(model_path):
208
- model_path = model_path.strip("/")
209
- model_paths = model_path.split("/")
210
- if model_paths[-1].startswith('checkpoint-'):
211
- return model_paths[-2] + "_" + model_paths[-1]
212
- else:
213
- return model_paths[-1]
214
-
215
- class KeywordsStoppingCriteria(StoppingCriteria):
216
- def __init__(self, keywords, tokenizer, input_ids):
217
- self.keywords = keywords
218
- self.keyword_ids = []
219
- self.max_keyword_len = 0
220
- for keyword in keywords:
221
- cur_keyword_ids = tokenizer(keyword).input_ids
222
- if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
223
- cur_keyword_ids = cur_keyword_ids[1:]
224
- if len(cur_keyword_ids) > self.max_keyword_len:
225
- self.max_keyword_len = len(cur_keyword_ids)
226
- self.keyword_ids.append(torch.tensor(cur_keyword_ids))
227
- self.tokenizer = tokenizer
228
- self.start_len = input_ids.shape[1]
229
-
230
- def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
231
- offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
232
- self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
233
- for keyword_id in self.keyword_ids:
234
- truncated_output_ids = output_ids[0, -keyword_id.shape[0]:]
235
- if torch.equal(truncated_output_ids, keyword_id):
236
- return True
237
- outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
238
- for keyword in self.keywords:
239
- if keyword in outputs:
240
- return True
241
- return False
242
-
243
- def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
244
- outputs = []
245
- for i in range(output_ids.shape[0]):
246
- outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores))
247
- return all(outputs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dialoggen/llava/model/__init__.py DELETED
@@ -1,6 +0,0 @@
1
- try:
2
- from .language_model.llava_llama import LlavaLlamaForCausalLM, LlavaConfig
3
- from .language_model.llava_mpt import LlavaMptForCausalLM, LlavaMptConfig
4
- from .language_model.llava_mistral import LlavaMistralForCausalLM, LlavaMistralConfig
5
- except:
6
- pass
 
 
 
 
 
 
 
dialoggen/llava/model/__pycache__/__init__.cpython-39.pyc DELETED
Binary file (500 Bytes)
 
dialoggen/llava/model/__pycache__/builder.cpython-39.pyc DELETED
Binary file (5.02 kB)
 
dialoggen/llava/model/__pycache__/llava_arch.cpython-39.pyc DELETED
Binary file (10.8 kB)
 
dialoggen/llava/model/apply_delta.py DELETED
@@ -1,48 +0,0 @@
1
- """
2
- Usage:
3
- python3 -m fastchat.model.apply_delta --base ~/model_weights/llama-7b --target ~/model_weights/vicuna-7b --delta lmsys/vicuna-7b-delta
4
- """
5
- import argparse
6
-
7
- import torch
8
- from tqdm import tqdm
9
- from transformers import AutoTokenizer, AutoModelForCausalLM
10
- from llava import LlavaLlamaForCausalLM
11
-
12
-
13
- def apply_delta(base_model_path, target_model_path, delta_path):
14
- print("Loading base model")
15
- base = AutoModelForCausalLM.from_pretrained(
16
- base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
17
-
18
- print("Loading delta")
19
- delta = LlavaLlamaForCausalLM.from_pretrained(delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
20
- delta_tokenizer = AutoTokenizer.from_pretrained(delta_path)
21
-
22
- print("Applying delta")
23
- for name, param in tqdm(delta.state_dict().items(), desc="Applying delta"):
24
- if name not in base.state_dict():
25
- assert name in ['model.mm_projector.weight', 'model.mm_projector.bias'], f'{name} not in base model'
26
- continue
27
- if param.data.shape == base.state_dict()[name].shape:
28
- param.data += base.state_dict()[name]
29
- else:
30
- assert name in ['model.embed_tokens.weight', 'lm_head.weight'], \
31
- f'{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}'
32
- bparam = base.state_dict()[name]
33
- param.data[:bparam.shape[0], :bparam.shape[1]] += bparam
34
-
35
- print("Saving target model")
36
- delta.save_pretrained(target_model_path)
37
- delta_tokenizer.save_pretrained(target_model_path)
38
-
39
-
40
- if __name__ == "__main__":
41
- parser = argparse.ArgumentParser()
42
- parser.add_argument("--base-model-path", type=str, required=True)
43
- parser.add_argument("--target-model-path", type=str, required=True)
44
- parser.add_argument("--delta-path", type=str, required=True)
45
-
46
- args = parser.parse_args()
47
-
48
- apply_delta(args.base_model_path, args.target_model_path, args.delta_path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dialoggen/llava/model/builder.py DELETED
@@ -1,166 +0,0 @@
1
- # Copyright 2023 Haotian Liu
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
-
16
- import os
17
- import warnings
18
- import shutil
19
-
20
- from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig
21
- import torch
22
- from llava.model import *
23
- from llava.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
24
-
25
-
26
- def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", use_flash_attn=False, llava_type_model=True, **kwargs):
27
- kwargs = {"device_map": device_map, **kwargs}
28
-
29
- if device != "cuda":
30
- kwargs['device_map'] = {"": device}
31
- if load_8bit:
32
- kwargs['load_in_8bit'] = True
33
- elif load_4bit:
34
- kwargs['load_in_4bit'] = True
35
- kwargs['quantization_config'] = BitsAndBytesConfig(
36
- load_in_4bit=True,
37
- bnb_4bit_compute_dtype=torch.float16,
38
- bnb_4bit_use_double_quant=True,
39
- bnb_4bit_quant_type='nf4'
40
- )
41
- else:
42
- kwargs['torch_dtype'] = torch.float16
43
-
44
- if use_flash_attn:
45
- kwargs['attn_implementation'] = 'flash_attention_2'
46
-
47
- if 'llava' in model_name.lower():
48
- # Load LLaVA model
49
- if 'lora' in model_name.lower() and model_base is None:
50
- warnings.warn('There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.')
51
- if 'lora' in model_name.lower() and model_base is not None:
52
- from llava.model.language_model.llava_llama import LlavaConfig
53
- lora_cfg_pretrained = LlavaConfig.from_pretrained(model_path)
54
- tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
55
- print('Loading LLaVA from base model...')
56
- model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs)
57
- token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
58
- if model.lm_head.weight.shape[0] != token_num:
59
- model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
60
- model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
61
-
62
- print('Loading additional LLaVA weights...')
63
- if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
64
- non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu')
65
- else:
66
- # this is probably from HF Hub
67
- from huggingface_hub import hf_hub_download
68
- def load_from_hf(repo_id, filename, subfolder=None):
69
- cache_file = hf_hub_download(
70
- repo_id=repo_id,
71
- filename=filename,
72
- subfolder=subfolder)
73
- return torch.load(cache_file, map_location='cpu')
74
- non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin')
75
- non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()}
76
- if any(k.startswith('model.model.') for k in non_lora_trainables):
77
- non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()}
78
- model.load_state_dict(non_lora_trainables, strict=False)
79
-
80
- from peft import PeftModel
81
- print('Loading LoRA weights...')
82
- model = PeftModel.from_pretrained(model, model_path)
83
- print('Merging LoRA weights...')
84
- model = model.merge_and_unload()
85
- print('Model is loaded...')
86
- elif model_base is not None:
87
- # this may be mm projector only
88
- print('Loading LLaVA from base model...')
89
- if 'mpt' in model_name.lower():
90
- if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')):
91
- shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(model_path, 'configuration_mpt.py'))
92
- tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True)
93
- cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
94
- model = LlavaMptForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
95
- else:
96
- tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
97
- cfg_pretrained = AutoConfig.from_pretrained(model_path)
98
- model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
99
-
100
- mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
101
- mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
102
- model.load_state_dict(mm_projector_weights, strict=False)
103
- else:
104
- if 'mpt' in model_name.lower():
105
- tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
106
- model = LlavaMptForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
107
- elif 'mistral' in model_name.lower():
108
- tokenizer = AutoTokenizer.from_pretrained(model_path)
109
- model = LlavaMistralForCausalLM.from_pretrained(
110
- model_path,
111
- low_cpu_mem_usage=True,
112
- **kwargs
113
- )
114
- else:
115
- tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
116
- model = LlavaLlamaForCausalLM.from_pretrained(
117
- model_path,
118
- low_cpu_mem_usage=True,
119
- **kwargs
120
- )
121
- else:
122
- # Load language model
123
- if model_base is not None:
124
- # PEFT model
125
- from peft import PeftModel
126
- tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
127
- model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs)
128
- print(f"Loading LoRA weights from {model_path}")
129
- model = PeftModel.from_pretrained(model, model_path)
130
- print(f"Merging weights")
131
- model = model.merge_and_unload()
132
- print('Convert to FP16...')
133
- model.to(torch.float16)
134
- else:
135
- use_fast = False
136
- if 'mpt' in model_name.lower():
137
- tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
138
- model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs)
139
- else:
140
- tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
141
- model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
142
-
143
- image_processor = None
144
-
145
- if llava_type_model:
146
- mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
147
- mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
148
- if mm_use_im_patch_token:
149
- tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
150
- if mm_use_im_start_end:
151
- tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
152
- model.resize_token_embeddings(len(tokenizer))
153
-
154
- vision_tower = model.get_vision_tower()
155
- if not vision_tower.is_loaded:
156
- vision_tower.load_model(device_map=device_map)
157
- if device_map != 'auto':
158
- vision_tower.to(device=device_map, dtype=torch.float16)
159
- image_processor = vision_tower.image_processor
160
-
161
- if hasattr(model.config, "max_sequence_length"):
162
- context_len = model.config.max_sequence_length
163
- else:
164
- context_len = 2048
165
-
166
- return tokenizer, model, image_processor, context_len
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dialoggen/llava/model/consolidate.py DELETED
@@ -1,29 +0,0 @@
1
- """
2
- Usage:
3
- python3 -m llava.model.consolidate --src ~/model_weights/llava-7b --dst ~/model_weights/llava-7b_consolidate
4
- """
5
- import argparse
6
-
7
- import torch
8
- from transformers import AutoTokenizer, AutoModelForCausalLM
9
- from llava.model import *
10
- from llava.model.utils import auto_upgrade
11
-
12
-
13
- def consolidate_ckpt(src_path, dst_path):
14
- print("Loading model")
15
- auto_upgrade(src_path)
16
- src_model = AutoModelForCausalLM.from_pretrained(src_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
17
- src_tokenizer = AutoTokenizer.from_pretrained(src_path, use_fast=False)
18
- src_model.save_pretrained(dst_path)
19
- src_tokenizer.save_pretrained(dst_path)
20
-
21
-
22
- if __name__ == "__main__":
23
- parser = argparse.ArgumentParser()
24
- parser.add_argument("--src", type=str, required=True)
25
- parser.add_argument("--dst", type=str, required=True)
26
-
27
- args = parser.parse_args()
28
-
29
- consolidate_ckpt(args.src, args.dst)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dialoggen/llava/model/language_model/__pycache__/llava_llama.cpython-39.pyc DELETED
Binary file (3.76 kB)
 
dialoggen/llava/model/language_model/__pycache__/llava_mistral.cpython-39.pyc DELETED
Binary file (3.8 kB)
 
dialoggen/llava/model/language_model/__pycache__/llava_mpt.cpython-39.pyc DELETED
Binary file (3.15 kB)
 
dialoggen/llava/model/language_model/llava_llama.py DELETED
@@ -1,158 +0,0 @@
1
- # Copyright 2023 Haotian Liu
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
-
16
- from typing import List, Optional, Tuple, Union
17
-
18
- import torch
19
- import torch.nn as nn
20
-
21
- from transformers import AutoConfig, AutoModelForCausalLM, \
22
- LlamaConfig, LlamaModel, LlamaForCausalLM
23
-
24
- from transformers.modeling_outputs import CausalLMOutputWithPast
25
- from transformers.generation.utils import GenerateOutput
26
-
27
- from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
28
-
29
-
30
- class LlavaConfig(LlamaConfig):
31
- model_type = "llava_llama"
32
-
33
-
34
- class LlavaLlamaModel(LlavaMetaModel, LlamaModel):
35
- config_class = LlavaConfig
36
-
37
- def __init__(self, config: LlamaConfig):
38
- super(LlavaLlamaModel, self).__init__(config)
39
-
40
-
41
- class LlavaLlamaForCausalLM(LlamaForCausalLM, LlavaMetaForCausalLM):
42
- config_class = LlavaConfig
43
-
44
- def __init__(self, config):
45
- super(LlamaForCausalLM, self).__init__(config)
46
- self.model = LlavaLlamaModel(config)
47
- self.pretraining_tp = config.pretraining_tp
48
- self.vocab_size = config.vocab_size
49
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
50
-
51
- # Initialize weights and apply final processing
52
- self.post_init()
53
-
54
- def get_model(self):
55
- return self.model
56
-
57
- def forward(
58
- self,
59
- input_ids: torch.LongTensor = None,
60
- attention_mask: Optional[torch.Tensor] = None,
61
- position_ids: Optional[torch.LongTensor] = None,
62
- past_key_values: Optional[List[torch.FloatTensor]] = None,
63
- inputs_embeds: Optional[torch.FloatTensor] = None,
64
- labels: Optional[torch.LongTensor] = None,
65
- use_cache: Optional[bool] = None,
66
- output_attentions: Optional[bool] = None,
67
- output_hidden_states: Optional[bool] = None,
68
- images: Optional[torch.FloatTensor] = None,
69
- image_sizes: Optional[List[List[int]]] = None,
70
- return_dict: Optional[bool] = None,
71
- ) -> Union[Tuple, CausalLMOutputWithPast]:
72
-
73
- if inputs_embeds is None:
74
- (
75
- input_ids,
76
- position_ids,
77
- attention_mask,
78
- past_key_values,
79
- inputs_embeds,
80
- labels
81
- ) = self.prepare_inputs_labels_for_multimodal(
82
- input_ids,
83
- position_ids,
84
- attention_mask,
85
- past_key_values,
86
- labels,
87
- images,
88
- image_sizes
89
- )
90
-
91
- return super().forward(
92
- input_ids=input_ids,
93
- attention_mask=attention_mask,
94
- position_ids=position_ids,
95
- past_key_values=past_key_values,
96
- inputs_embeds=inputs_embeds,
97
- labels=labels,
98
- use_cache=use_cache,
99
- output_attentions=output_attentions,
100
- output_hidden_states=output_hidden_states,
101
- return_dict=return_dict
102
- )
103
-
104
- @torch.no_grad()
105
- def generate(
106
- self,
107
- inputs: Optional[torch.Tensor] = None,
108
- images: Optional[torch.Tensor] = None,
109
- image_sizes: Optional[torch.Tensor] = None,
110
- **kwargs,
111
- ) -> Union[GenerateOutput, torch.LongTensor]:
112
- position_ids = kwargs.pop("position_ids", None)
113
- attention_mask = kwargs.pop("attention_mask", None)
114
- if "inputs_embeds" in kwargs:
115
- raise NotImplementedError("`inputs_embeds` is not supported")
116
-
117
- if images is not None:
118
- (
119
- inputs,
120
- position_ids,
121
- attention_mask,
122
- _,
123
- inputs_embeds,
124
- _
125
- ) = self.prepare_inputs_labels_for_multimodal(
126
- inputs,
127
- position_ids,
128
- attention_mask,
129
- None,
130
- None,
131
- images,
132
- image_sizes=image_sizes
133
- )
134
- else:
135
- inputs_embeds = self.get_model().embed_tokens(inputs)
136
-
137
- return super().generate(
138
- position_ids=position_ids,
139
- attention_mask=attention_mask,
140
- inputs_embeds=inputs_embeds,
141
- **kwargs
142
- )
143
-
144
- def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
145
- inputs_embeds=None, **kwargs):
146
- images = kwargs.pop("images", None)
147
- image_sizes = kwargs.pop("image_sizes", None)
148
- inputs = super().prepare_inputs_for_generation(
149
- input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
150
- )
151
- if images is not None:
152
- inputs['images'] = images
153
- if image_sizes is not None:
154
- inputs['image_sizes'] = image_sizes
155
- return inputs
156
-
157
- AutoConfig.register("llava_llama", LlavaConfig)
158
- AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dialoggen/llava/model/language_model/llava_mistral.py DELETED
@@ -1,158 +0,0 @@
1
- # Copyright 2023 Haotian Liu
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
-
16
- from typing import List, Optional, Tuple, Union
17
-
18
- import torch
19
- import torch.nn as nn
20
- from torch.nn import CrossEntropyLoss
21
-
22
- from transformers import AutoConfig, AutoModelForCausalLM, \
23
- MistralConfig, MistralModel, MistralForCausalLM
24
-
25
- from transformers.modeling_outputs import CausalLMOutputWithPast
26
- from transformers.generation.utils import GenerateOutput
27
-
28
- from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
29
-
30
-
31
- class LlavaMistralConfig(MistralConfig):
32
- model_type = "llava_mistral"
33
-
34
-
35
- class LlavaMistralModel(LlavaMetaModel, MistralModel):
36
- config_class = LlavaMistralConfig
37
-
38
- def __init__(self, config: MistralConfig):
39
- super(LlavaMistralModel, self).__init__(config)
40
-
41
-
42
- class LlavaMistralForCausalLM(MistralForCausalLM, LlavaMetaForCausalLM):
43
- config_class = LlavaMistralConfig
44
-
45
- def __init__(self, config):
46
- super(MistralForCausalLM, self).__init__(config)
47
- self.model = LlavaMistralModel(config)
48
-
49
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
50
-
51
- # Initialize weights and apply final processing
52
- self.post_init()
53
-
54
- def get_model(self):
55
- return self.model
56
-
57
- def forward(
58
- self,
59
- input_ids: torch.LongTensor = None,
60
- attention_mask: Optional[torch.Tensor] = None,
61
- position_ids: Optional[torch.LongTensor] = None,
62
- past_key_values: Optional[List[torch.FloatTensor]] = None,
63
- inputs_embeds: Optional[torch.FloatTensor] = None,
64
- labels: Optional[torch.LongTensor] = None,
65
- use_cache: Optional[bool] = None,
66
- output_attentions: Optional[bool] = None,
67
- output_hidden_states: Optional[bool] = None,
68
- images: Optional[torch.FloatTensor] = None,
69
- image_sizes: Optional[List[List[int]]] = None,
70
- return_dict: Optional[bool] = None,
71
- ) -> Union[Tuple, CausalLMOutputWithPast]:
72
-
73
- if inputs_embeds is None:
74
- (
75
- input_ids,
76
- position_ids,
77
- attention_mask,
78
- past_key_values,
79
- inputs_embeds,
80
- labels
81
- ) = self.prepare_inputs_labels_for_multimodal(
82
- input_ids,
83
- position_ids,
84
- attention_mask,
85
- past_key_values,
86
- labels,
87
- images,
88
- image_sizes
89
- )
90
-
91
- return super().forward(
92
- input_ids=input_ids,
93
- attention_mask=attention_mask,
94
- position_ids=position_ids,
95
- past_key_values=past_key_values,
96
- inputs_embeds=inputs_embeds,
97
- labels=labels,
98
- use_cache=use_cache,
99
- output_attentions=output_attentions,
100
- output_hidden_states=output_hidden_states,
101
- return_dict=return_dict
102
- )
103
-
104
- @torch.no_grad()
105
- def generate(
106
- self,
107
- inputs: Optional[torch.Tensor] = None,
108
- images: Optional[torch.Tensor] = None,
109
- image_sizes: Optional[torch.Tensor] = None,
110
- **kwargs,
111
- ) -> Union[GenerateOutput, torch.LongTensor]:
112
- position_ids = kwargs.pop("position_ids", None)
113
- attention_mask = kwargs.pop("attention_mask", None)
114
- if "inputs_embeds" in kwargs:
115
- raise NotImplementedError("`inputs_embeds` is not supported")
116
-
117
- if images is not None:
118
- (
119
- inputs,
120
- position_ids,
121
- attention_mask,
122
- _,
123
- inputs_embeds,
124
- _
125
- ) = self.prepare_inputs_labels_for_multimodal(
126
- inputs,
127
- position_ids,
128
- attention_mask,
129
- None,
130
- None,
131
- images,
132
- image_sizes=image_sizes
133
- )
134
- else:
135
- inputs_embeds = self.get_model().embed_tokens(inputs)
136
-
137
- return super().generate(
138
- position_ids=position_ids,
139
- attention_mask=attention_mask,
140
- inputs_embeds=inputs_embeds,
141
- **kwargs
142
- )
143
-
144
- def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
145
- inputs_embeds=None, **kwargs):
146
- images = kwargs.pop("images", None)
147
- image_sizes = kwargs.pop("image_sizes", None)
148
- inputs = super().prepare_inputs_for_generation(
149
- input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
150
- )
151
- if images is not None:
152
- inputs['images'] = images
153
- if image_sizes is not None:
154
- inputs['image_sizes'] = image_sizes
155
- return inputs
156
-
157
- AutoConfig.register("llava_mistral", LlavaMistralConfig)
158
- AutoModelForCausalLM.register(LlavaMistralConfig, LlavaMistralForCausalLM)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dialoggen/llava/model/language_model/llava_mpt.py DELETED
@@ -1,97 +0,0 @@
1
- # Copyright 2023 Haotian Liu
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
-
16
- from typing import Optional, Tuple
17
-
18
- import torch
19
-
20
- from transformers import AutoConfig, AutoModelForCausalLM, \
21
- MptConfig, MptForCausalLM, MptModel
22
- from llava.model.llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
23
-
24
-
25
- class LlavaMptConfig(MptConfig):
26
- model_type = "llava_mpt"
27
-
28
-
29
- class LlavaMptModel(LlavaMetaModel, MptModel):
30
- config_class = LlavaMptConfig
31
-
32
- def __init__(self, config: MptConfig):
33
- config.hidden_size = config.d_model
34
- super(LlavaMptModel, self).__init__(config)
35
-
36
- def embed_tokens(self, x):
37
- return self.wte(x)
38
-
39
-
40
- class LlavaMptForCausalLM(MptForCausalLM, LlavaMetaForCausalLM):
41
- config_class = LlavaMptConfig
42
- supports_gradient_checkpointing = True
43
-
44
- def __init__(self, config):
45
- super(MptForCausalLM, self).__init__(config)
46
-
47
- self.transformer = LlavaMptModel(config)
48
- self.lm_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=False)
49
-
50
- # Initialize weights and apply final processing
51
- self.post_init()
52
-
53
- def get_model(self):
54
- return self.transformer
55
-
56
- def _set_gradient_checkpointing(self, module, value=False):
57
- if isinstance(module, LlavaMptModel):
58
- module.gradient_checkpointing = value
59
-
60
- def forward(
61
- self,
62
- input_ids: Optional[torch.LongTensor] = None,
63
- past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
64
- attention_mask: Optional[torch.Tensor] = None,
65
- inputs_embeds: Optional[torch.Tensor] = None,
66
- labels: Optional[torch.Tensor] = None,
67
- use_cache: Optional[bool] = None,
68
- output_attentions: Optional[bool] = None,
69
- output_hidden_states: Optional[bool] = None,
70
- return_dict: Optional[bool] = None,
71
- images=None):
72
-
73
- input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images)
74
-
75
- return super().forward(
76
- input_ids,
77
- past_key_values=past_key_values,
78
- attention_mask=attention_mask,
79
- inputs_embeds=inputs_embeds,
80
- labels=labels,
81
- use_cache=use_cache,
82
- output_attentions=output_attentions,
83
- output_hidden_states=output_hidden_states,
84
- return_dict=return_dict,
85
- )
86
-
87
- def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
88
- images = kwargs.pop("images", None)
89
- _inputs = super().prepare_inputs_for_generation(
90
- input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
91
- )
92
- _inputs['images'] = images
93
- return _inputs
94
-
95
-
96
- AutoConfig.register("llava_mpt", LlavaMptConfig)
97
- AutoModelForCausalLM.register(LlavaMptConfig, LlavaMptForCausalLM)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dialoggen/llava/model/llava_arch.py DELETED
@@ -1,368 +0,0 @@
1
- # Copyright 2023 Haotian Liu
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
-
16
- from abc import ABC, abstractmethod
17
-
18
- import torch
19
- import torch.nn as nn
20
-
21
- from .multimodal_encoder.builder import build_vision_tower
22
- from .multimodal_projector.builder import build_vision_projector
23
-
24
- from llava.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
25
-
26
- from llava.mm_utils import get_anyres_image_grid_shape
27
-
28
-
29
- class LlavaMetaModel:
30
-
31
- def __init__(self, config):
32
- super(LlavaMetaModel, self).__init__(config)
33
-
34
- if hasattr(config, "mm_vision_tower"):
35
- self.vision_tower = build_vision_tower(config, delay_load=True)
36
- self.mm_projector = build_vision_projector(config)
37
-
38
- if 'unpad' in getattr(config, 'mm_patch_merge_type', ''):
39
- self.image_newline = nn.Parameter(
40
- torch.empty(config.hidden_size, dtype=self.dtype)
41
- )
42
-
43
- def get_vision_tower(self):
44
- vision_tower = getattr(self, 'vision_tower', None)
45
- if type(vision_tower) is list:
46
- vision_tower = vision_tower[0]
47
- return vision_tower
48
-
49
- def initialize_vision_modules(self, model_args, fsdp=None):
50
- vision_tower = model_args.vision_tower
51
- mm_vision_select_layer = model_args.mm_vision_select_layer
52
- mm_vision_select_feature = model_args.mm_vision_select_feature
53
- pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
54
- mm_patch_merge_type = model_args.mm_patch_merge_type
55
-
56
- self.config.mm_vision_tower = vision_tower
57
-
58
- if self.get_vision_tower() is None:
59
- vision_tower = build_vision_tower(model_args)
60
-
61
- if fsdp is not None and len(fsdp) > 0:
62
- self.vision_tower = [vision_tower]
63
- else:
64
- self.vision_tower = vision_tower
65
- else:
66
- if fsdp is not None and len(fsdp) > 0:
67
- vision_tower = self.vision_tower[0]
68
- else:
69
- vision_tower = self.vision_tower
70
- vision_tower.load_model()
71
-
72
- self.config.use_mm_proj = True
73
- self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
74
- self.config.mm_hidden_size = vision_tower.hidden_size
75
- self.config.mm_vision_select_layer = mm_vision_select_layer
76
- self.config.mm_vision_select_feature = mm_vision_select_feature
77
- self.config.mm_patch_merge_type = mm_patch_merge_type
78
-
79
- if getattr(self, 'mm_projector', None) is None:
80
- self.mm_projector = build_vision_projector(self.config)
81
-
82
- if 'unpad' in mm_patch_merge_type:
83
- embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
84
- self.image_newline = nn.Parameter(
85
- torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
86
- )
87
- else:
88
- # In case it is frozen by LoRA
89
- for p in self.mm_projector.parameters():
90
- p.requires_grad = True
91
-
92
- if pretrain_mm_mlp_adapter is not None:
93
- mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
94
- def get_w(weights, keyword):
95
- return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
96
-
97
- self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
98
-
99
-
100
- def unpad_image(tensor, original_size):
101
- """
102
- Unpads a PyTorch tensor of a padded and resized image.
103
-
104
- Args:
105
- tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
106
- original_size (tuple): The original size of the image (height, width).
107
-
108
- Returns:
109
- torch.Tensor: The unpadded image tensor.
110
- """
111
- original_width, original_height = original_size
112
- current_height, current_width = tensor.shape[1:]
113
-
114
- original_aspect_ratio = original_width / original_height
115
- current_aspect_ratio = current_width / current_height
116
-
117
- if original_aspect_ratio > current_aspect_ratio:
118
- scale_factor = current_width / original_width
119
- new_height = int(original_height * scale_factor)
120
- padding = (current_height - new_height) // 2
121
- unpadded_tensor = tensor[:, padding:current_height - padding, :]
122
- else:
123
- scale_factor = current_height / original_height
124
- new_width = int(original_width * scale_factor)
125
- padding = (current_width - new_width) // 2
126
- unpadded_tensor = tensor[:, :, padding:current_width - padding]
127
-
128
- return unpadded_tensor
129
-
130
-
131
- class LlavaMetaForCausalLM(ABC):
132
-
133
- @abstractmethod
134
- def get_model(self):
135
- pass
136
-
137
- def get_vision_tower(self):
138
- return self.get_model().get_vision_tower()
139
-
140
- def encode_images(self, images):
141
- image_features = self.get_model().get_vision_tower()(images)
142
- image_features = self.get_model().mm_projector(image_features)
143
- return image_features
144
-
145
- def prepare_inputs_labels_for_multimodal(
146
- self, input_ids, position_ids, attention_mask, past_key_values, labels,
147
- images, image_sizes=None
148
- ):
149
- vision_tower = self.get_vision_tower()
150
- if vision_tower is None or images is None or input_ids.shape[1] == 1:
151
- return input_ids, position_ids, attention_mask, past_key_values, None, labels
152
-
153
- if type(images) is list or images.ndim == 5:
154
- if type(images) is list:
155
- images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
156
- concat_images = torch.cat([image for image in images], dim=0)
157
- image_features = self.encode_images(concat_images)
158
- split_sizes = [image.shape[0] for image in images]
159
- image_features = torch.split(image_features, split_sizes, dim=0)
160
- mm_patch_merge_type = getattr(self.config, 'mm_patch_merge_type', 'flat')
161
- image_aspect_ratio = getattr(self.config, 'image_aspect_ratio', 'square')
162
- if mm_patch_merge_type == 'flat':
163
- image_features = [x.flatten(0, 1) for x in image_features]
164
- elif mm_patch_merge_type.startswith('spatial'):
165
- new_image_features = []
166
- for image_idx, image_feature in enumerate(image_features):
167
- if image_feature.shape[0] > 1:
168
- base_image_feature = image_feature[0]
169
- image_feature = image_feature[1:]
170
- height = width = self.get_vision_tower().num_patches_per_side
171
- assert height * width == base_image_feature.shape[0]
172
- if image_aspect_ratio == 'anyres':
173
- num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, self.get_vision_tower().config.image_size)
174
- image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
175
- else:
176
- raise NotImplementedError
177
- if 'unpad' in mm_patch_merge_type:
178
- image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
179
- image_feature = image_feature.flatten(1, 2).flatten(2, 3)
180
- image_feature = unpad_image(image_feature, image_sizes[image_idx])
181
- image_feature = torch.cat((
182
- image_feature,
183
- self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
184
- ), dim=-1)
185
- image_feature = image_feature.flatten(1, 2).transpose(0, 1)
186
- else:
187
- image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
188
- image_feature = image_feature.flatten(0, 3)
189
- image_feature = torch.cat((base_image_feature, image_feature), dim=0)
190
- else:
191
- image_feature = image_feature[0]
192
- if 'unpad' in mm_patch_merge_type:
193
- image_feature = torch.cat((
194
- image_feature,
195
- self.model.image_newline[None].to(image_feature.device)
196
- ), dim=0)
197
- new_image_features.append(image_feature)
198
- image_features = new_image_features
199
- else:
200
- raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
201
- else:
202
- image_features = self.encode_images(images)
203
-
204
- # TODO: image start / end is not implemented here to support pretraining.
205
- if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
206
- raise NotImplementedError
207
-
208
- # Let's just add dummy tensors if they do not exist,
209
- # it is a headache to deal with None all the time.
210
- # But it is not ideal, and if you have a better idea,
211
- # please open an issue / submit a PR, thanks.
212
- _labels = labels
213
- _position_ids = position_ids
214
- _attention_mask = attention_mask
215
- if attention_mask is None:
216
- attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
217
- else:
218
- attention_mask = attention_mask.bool()
219
- if position_ids is None:
220
- position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
221
- if labels is None:
222
- labels = torch.full_like(input_ids, IGNORE_INDEX)
223
-
224
- # remove the padding using attention_mask -- FIXME
225
- _input_ids = input_ids
226
- input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
227
- labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
228
-
229
- new_input_embeds = []
230
- new_labels = []
231
- cur_image_idx = 0
232
- for batch_idx, cur_input_ids in enumerate(input_ids):
233
- num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
234
- if num_images == 0:
235
- cur_image_features = image_features[cur_image_idx]
236
- cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
237
- cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
238
- new_input_embeds.append(cur_input_embeds)
239
- new_labels.append(labels[batch_idx])
240
- cur_image_idx += 1
241
- continue
242
-
243
- image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
244
- cur_input_ids_noim = []
245
- cur_labels = labels[batch_idx]
246
- cur_labels_noim = []
247
- for i in range(len(image_token_indices) - 1):
248
- cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
249
- cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
250
- split_sizes = [x.shape[0] for x in cur_labels_noim]
251
- cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
252
- cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
253
- cur_new_input_embeds = []
254
- cur_new_labels = []
255
-
256
- for i in range(num_images + 1):
257
- cur_new_input_embeds.append(cur_input_embeds_no_im[i])
258
- cur_new_labels.append(cur_labels_noim[i])
259
- if i < num_images:
260
- cur_image_features = image_features[cur_image_idx]
261
- cur_image_idx += 1
262
- cur_new_input_embeds.append(cur_image_features)
263
- cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
264
-
265
- cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
266
-
267
- cur_new_input_embeds = torch.cat(cur_new_input_embeds)
268
- cur_new_labels = torch.cat(cur_new_labels)
269
-
270
- new_input_embeds.append(cur_new_input_embeds)
271
- new_labels.append(cur_new_labels)
272
-
273
- # Truncate sequences to max length as image embeddings can make the sequence longer
274
- tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
275
- if tokenizer_model_max_length is not None:
276
- new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
277
- new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
278
-
279
- # Combine them
280
- max_len = max(x.shape[0] for x in new_input_embeds)
281
- batch_size = len(new_input_embeds)
282
-
283
- new_input_embeds_padded = []
284
- new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
285
- attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
286
- position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
287
-
288
- for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
289
- cur_len = cur_new_embed.shape[0]
290
- if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
291
- new_input_embeds_padded.append(torch.cat((
292
- torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
293
- cur_new_embed
294
- ), dim=0))
295
- if cur_len > 0:
296
- new_labels_padded[i, -cur_len:] = cur_new_labels
297
- attention_mask[i, -cur_len:] = True
298
- position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
299
- else:
300
- new_input_embeds_padded.append(torch.cat((
301
- cur_new_embed,
302
- torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
303
- ), dim=0))
304
- if cur_len > 0:
305
- new_labels_padded[i, :cur_len] = cur_new_labels
306
- attention_mask[i, :cur_len] = True
307
- position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
308
-
309
- new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
310
-
311
- if _labels is None:
312
- new_labels = None
313
- else:
314
- new_labels = new_labels_padded
315
-
316
- if _attention_mask is None:
317
- attention_mask = None
318
- else:
319
- attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
320
-
321
- if _position_ids is None:
322
- position_ids = None
323
-
324
- return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
325
-
326
- def initialize_vision_tokenizer(self, model_args, tokenizer):
327
- if model_args.mm_use_im_patch_token:
328
- tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
329
- self.resize_token_embeddings(len(tokenizer))
330
-
331
- if model_args.mm_use_im_start_end:
332
- num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
333
- self.resize_token_embeddings(len(tokenizer))
334
-
335
- if num_new_tokens > 0:
336
- input_embeddings = self.get_input_embeddings().weight.data
337
- output_embeddings = self.get_output_embeddings().weight.data
338
-
339
- input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
340
- dim=0, keepdim=True)
341
- output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
342
- dim=0, keepdim=True)
343
-
344
- input_embeddings[-num_new_tokens:] = input_embeddings_avg
345
- output_embeddings[-num_new_tokens:] = output_embeddings_avg
346
-
347
- if model_args.tune_mm_mlp_adapter:
348
- for p in self.get_input_embeddings().parameters():
349
- p.requires_grad = True
350
- for p in self.get_output_embeddings().parameters():
351
- p.requires_grad = False
352
-
353
- if model_args.pretrain_mm_mlp_adapter:
354
- mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
355
- embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
356
- assert num_new_tokens == 2
357
- if input_embeddings.shape == embed_tokens_weight.shape:
358
- input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
359
- elif embed_tokens_weight.shape[0] == num_new_tokens:
360
- input_embeddings[-num_new_tokens:] = embed_tokens_weight
361
- else:
362
- raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
363
- elif model_args.mm_use_im_patch_token:
364
- if model_args.tune_mm_mlp_adapter:
365
- for p in self.get_input_embeddings().parameters():
366
- p.requires_grad = False
367
- for p in self.get_output_embeddings().parameters():
368
- p.requires_grad = False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dialoggen/llava/model/make_delta.py DELETED
@@ -1,52 +0,0 @@
1
- """
2
- Usage:
3
- python3 -m llava.model.make_delta --base ~/model_weights/llama-7b --target ~/model_weights/llava-7b --delta ~/model_weights/llava-7b-delta --hub-repo-id liuhaotian/llava-7b-delta
4
- """
5
- import argparse
6
-
7
- import torch
8
- from tqdm import tqdm
9
- from transformers import AutoTokenizer, AutoModelForCausalLM
10
- from llava.model.utils import auto_upgrade
11
-
12
-
13
- def make_delta(base_model_path, target_model_path, delta_path, hub_repo_id):
14
- print("Loading base model")
15
- base = AutoModelForCausalLM.from_pretrained(
16
- base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
17
-
18
- print("Loading target model")
19
- auto_upgrade(target_model_path)
20
- target = AutoModelForCausalLM.from_pretrained(target_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
21
-
22
- print("Calculating delta")
23
- for name, param in tqdm(target.state_dict().items(), desc="Calculating delta"):
24
- if name not in base.state_dict():
25
- assert name in ['model.mm_projector.weight', 'model.mm_projector.bias'], f'{name} not in base model'
26
- continue
27
- if param.data.shape == base.state_dict()[name].shape:
28
- param.data -= base.state_dict()[name]
29
- else:
30
- assert name in ['model.embed_tokens.weight', 'lm_head.weight'], f'{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}'
31
- bparam = base.state_dict()[name]
32
- param.data[:bparam.shape[0], :bparam.shape[1]] -= bparam
33
-
34
- print("Saving delta")
35
- if hub_repo_id:
36
- kwargs = {"push_to_hub": True, "repo_id": hub_repo_id}
37
- else:
38
- kwargs = {}
39
- target.save_pretrained(delta_path, **kwargs)
40
- target_tokenizer = AutoTokenizer.from_pretrained(target_model_path)
41
- target_tokenizer.save_pretrained(delta_path, **kwargs)
42
-
43
-
44
- if __name__ == "__main__":
45
- parser = argparse.ArgumentParser()
46
- parser.add_argument("--base-model-path", type=str, required=True)
47
- parser.add_argument("--target-model-path", type=str, required=True)
48
- parser.add_argument("--delta-path", type=str, required=True)
49
- parser.add_argument("--hub-repo-id", type=str, default=None)
50
- args = parser.parse_args()
51
-
52
- make_delta(args.base_model_path, args.target_model_path, args.delta_path, args.hub_repo_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dialoggen/llava/model/multimodal_encoder/__pycache__/builder.cpython-39.pyc DELETED
Binary file (687 Bytes)
 
dialoggen/llava/model/multimodal_encoder/__pycache__/clip_encoder.cpython-39.pyc DELETED
Binary file (3.37 kB)
 
dialoggen/llava/model/multimodal_encoder/builder.py DELETED
@@ -1,11 +0,0 @@
1
- import os
2
- from .clip_encoder import CLIPVisionTower
3
-
4
-
5
- def build_vision_tower(vision_tower_cfg, **kwargs):
6
- vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None))
7
- is_absolute_path_exists = os.path.exists(vision_tower)
8
- if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion") or "ShareGPT4V" in vision_tower:
9
- return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
10
-
11
- raise ValueError(f'Unknown vision tower: {vision_tower}')
 
 
 
 
 
 
 
 
 
 
 
 
dialoggen/llava/model/multimodal_encoder/clip_encoder.py DELETED
@@ -1,88 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
-
4
- from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
5
-
6
-
7
- class CLIPVisionTower(nn.Module):
8
- def __init__(self, vision_tower, args, delay_load=False):
9
- super().__init__()
10
-
11
- self.is_loaded = False
12
-
13
- self.vision_tower_name = vision_tower
14
- self.select_layer = args.mm_vision_select_layer
15
- self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
16
-
17
- if not delay_load:
18
- self.load_model()
19
- elif getattr(args, 'unfreeze_mm_vision_tower', False):
20
- self.load_model()
21
- else:
22
- self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
23
-
24
- def load_model(self, device_map=None):
25
- if self.is_loaded:
26
- print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name))
27
- return
28
-
29
- self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
30
- self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map)
31
- self.vision_tower.requires_grad_(False)
32
-
33
- self.is_loaded = True
34
-
35
- def feature_select(self, image_forward_outs):
36
- image_features = image_forward_outs.hidden_states[self.select_layer]
37
- if self.select_feature == 'patch':
38
- image_features = image_features[:, 1:]
39
- elif self.select_feature == 'cls_patch':
40
- image_features = image_features
41
- else:
42
- raise ValueError(f'Unexpected select feature: {self.select_feature}')
43
- return image_features
44
-
45
- @torch.no_grad()
46
- def forward(self, images):
47
- if type(images) is list:
48
- image_features = []
49
- for image in images:
50
- image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
51
- image_feature = self.feature_select(image_forward_out).to(image.dtype)
52
- image_features.append(image_feature)
53
- else:
54
- image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
55
- image_features = self.feature_select(image_forward_outs).to(images.dtype)
56
-
57
- return image_features
58
-
59
- @property
60
- def dummy_feature(self):
61
- return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
62
-
63
- @property
64
- def dtype(self):
65
- return self.vision_tower.dtype
66
-
67
- @property
68
- def device(self):
69
- return self.vision_tower.device
70
-
71
- @property
72
- def config(self):
73
- if self.is_loaded:
74
- return self.vision_tower.config
75
- else:
76
- return self.cfg_only
77
-
78
- @property
79
- def hidden_size(self):
80
- return self.config.hidden_size
81
-
82
- @property
83
- def num_patches_per_side(self):
84
- return self.config.image_size // self.config.patch_size
85
-
86
- @property
87
- def num_patches(self):
88
- return (self.config.image_size // self.config.patch_size) ** 2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dialoggen/llava/model/multimodal_projector/__pycache__/builder.cpython-39.pyc DELETED
Binary file (2.06 kB)
 
dialoggen/llava/model/multimodal_projector/builder.py DELETED
@@ -1,51 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import re
4
-
5
-
6
- class IdentityMap(nn.Module):
7
- def __init__(self):
8
- super().__init__()
9
-
10
- def forward(self, x, *args, **kwargs):
11
- return x
12
-
13
- @property
14
- def config(self):
15
- return {"mm_projector_type": 'identity'}
16
-
17
-
18
- class SimpleResBlock(nn.Module):
19
- def __init__(self, channels):
20
- super().__init__()
21
- self.pre_norm = nn.LayerNorm(channels)
22
-
23
- self.proj = nn.Sequential(
24
- nn.Linear(channels, channels),
25
- nn.GELU(),
26
- nn.Linear(channels, channels)
27
- )
28
- def forward(self, x):
29
- x = self.pre_norm(x)
30
- return x + self.proj(x)
31
-
32
-
33
- def build_vision_projector(config, delay_load=False, **kwargs):
34
- projector_type = getattr(config, 'mm_projector_type', 'linear')
35
-
36
- if projector_type == 'linear':
37
- return nn.Linear(config.mm_hidden_size, config.hidden_size)
38
-
39
- mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
40
- if mlp_gelu_match:
41
- mlp_depth = int(mlp_gelu_match.group(1))
42
- modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
43
- for _ in range(1, mlp_depth):
44
- modules.append(nn.GELU())
45
- modules.append(nn.Linear(config.hidden_size, config.hidden_size))
46
- return nn.Sequential(*modules)
47
-
48
- if projector_type == 'identity':
49
- return IdentityMap()
50
-
51
- raise ValueError(f'Unknown projector type: {projector_type}')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dialoggen/llava/model/utils.py DELETED
@@ -1,20 +0,0 @@
1
- from transformers import AutoConfig
2
-
3
-
4
- def auto_upgrade(config):
5
- cfg = AutoConfig.from_pretrained(config)
6
- if 'llava' in config and 'llava' not in cfg.model_type:
7
- assert cfg.model_type == 'llama'
8
- print("You are using newer LLaVA code base, while the checkpoint of v0 is from older code base.")
9
- print("You must upgrade the checkpoint to the new code base (this can be done automatically).")
10
- confirm = input("Please confirm that you want to upgrade the checkpoint. [Y/N]")
11
- if confirm.lower() in ["y", "yes"]:
12
- print("Upgrading checkpoint...")
13
- assert len(cfg.architectures) == 1
14
- setattr(cfg.__class__, "model_type", "llava")
15
- cfg.architectures[0] = 'LlavaLlamaForCausalLM'
16
- cfg.save_pretrained(config)
17
- print("Checkpoint upgraded.")
18
- else:
19
- print("Checkpoint upgrade aborted.")
20
- exit(1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dialoggen/llava/utils.py DELETED
@@ -1,126 +0,0 @@
1
- import datetime
2
- import logging
3
- import logging.handlers
4
- import os
5
- import sys
6
-
7
- import requests
8
-
9
- from llava.constants import LOGDIR
10
-
11
- server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
12
- moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN."
13
-
14
- handler = None
15
-
16
-
17
- def build_logger(logger_name, logger_filename):
18
- global handler
19
-
20
- formatter = logging.Formatter(
21
- fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
22
- datefmt="%Y-%m-%d %H:%M:%S",
23
- )
24
-
25
- # Set the format of root handlers
26
- if not logging.getLogger().handlers:
27
- logging.basicConfig(level=logging.INFO)
28
- logging.getLogger().handlers[0].setFormatter(formatter)
29
-
30
- # Redirect stdout and stderr to loggers
31
- stdout_logger = logging.getLogger("stdout")
32
- stdout_logger.setLevel(logging.INFO)
33
- sl = StreamToLogger(stdout_logger, logging.INFO)
34
- sys.stdout = sl
35
-
36
- stderr_logger = logging.getLogger("stderr")
37
- stderr_logger.setLevel(logging.ERROR)
38
- sl = StreamToLogger(stderr_logger, logging.ERROR)
39
- sys.stderr = sl
40
-
41
- # Get logger
42
- logger = logging.getLogger(logger_name)
43
- logger.setLevel(logging.INFO)
44
-
45
- # Add a file handler for all loggers
46
- if handler is None:
47
- os.makedirs(LOGDIR, exist_ok=True)
48
- filename = os.path.join(LOGDIR, logger_filename)
49
- handler = logging.handlers.TimedRotatingFileHandler(
50
- filename, when='D', utc=True, encoding='UTF-8')
51
- handler.setFormatter(formatter)
52
-
53
- for name, item in logging.root.manager.loggerDict.items():
54
- if isinstance(item, logging.Logger):
55
- item.addHandler(handler)
56
-
57
- return logger
58
-
59
-
60
- class StreamToLogger(object):
61
- """
62
- Fake file-like stream object that redirects writes to a logger instance.
63
- """
64
- def __init__(self, logger, log_level=logging.INFO):
65
- self.terminal = sys.stdout
66
- self.logger = logger
67
- self.log_level = log_level
68
- self.linebuf = ''
69
-
70
- def __getattr__(self, attr):
71
- return getattr(self.terminal, attr)
72
-
73
- def write(self, buf):
74
- temp_linebuf = self.linebuf + buf
75
- self.linebuf = ''
76
- for line in temp_linebuf.splitlines(True):
77
- # From the io.TextIOWrapper docs:
78
- # On output, if newline is None, any '\n' characters written
79
- # are translated to the system default line separator.
80
- # By default sys.stdout.write() expects '\n' newlines and then
81
- # translates them so this is still cross platform.
82
- if line[-1] == '\n':
83
- self.logger.log(self.log_level, line.rstrip())
84
- else:
85
- self.linebuf += line
86
-
87
- def flush(self):
88
- if self.linebuf != '':
89
- self.logger.log(self.log_level, self.linebuf.rstrip())
90
- self.linebuf = ''
91
-
92
-
93
- def disable_torch_init():
94
- """
95
- Disable the redundant torch default initialization to accelerate model creation.
96
- """
97
- import torch
98
- setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
99
- setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
100
-
101
-
102
- def violates_moderation(text):
103
- """
104
- Check whether the text violates OpenAI moderation API.
105
- """
106
- url = "https://api.openai.com/v1/moderations"
107
- headers = {"Content-Type": "application/json",
108
- "Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]}
109
- text = text.replace("\n", "")
110
- data = "{" + '"input": ' + f'"{text}"' + "}"
111
- data = data.encode("utf-8")
112
- try:
113
- ret = requests.post(url, headers=headers, data=data, timeout=5)
114
- flagged = ret.json()["results"][0]["flagged"]
115
- except requests.exceptions.RequestException as e:
116
- flagged = False
117
- except KeyError as e:
118
- flagged = False
119
-
120
- return flagged
121
-
122
-
123
- def pretty_print_semaphore(semaphore):
124
- if semaphore is None:
125
- return "None"
126
- return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"