--- license: other license_name: tencent-hunyuan-community license_link: https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/blob/main/LICENSE.txt language: - en --- # HunyuanDiT TensorRT Acceleration English | [中文](https://huggingface.co/Tencent-Hunyuan/TensorRT-libs/blob/main/README_zh.md) We provide a TensorRT version of [HunyuanDiT](https://github.com/Tencent/HunyuanDiT) for inference acceleration (faster than flash attention). One can convert the torch model to TensorRT model using the following steps. ## 1. Download dependencies from huggingface. ```shell cd HunyuanDiT # Use the huggingface-cli tool to download the model. huggingface-cli download Tencent-Hunyuan/TensorRT-libs --local-dir ./ckpts/t2i/model_trt ``` ## 2. Install the TensorRT dependencies. ```shell sh trt/install.sh ``` ## 3. Build the TensorRT engine. ### Method 1: Use the prebuilt engine We provide some prebuilt TensorRT engines. | Supported GPU | Download Link | Remote Path | |:----------------:|:---------------------------------------------------------------------------------------------------------------:|:---------------------------------:| | GeForce RTX 3090 | [HuggingFace](https://huggingface.co/Tencent-Hunyuan/TensorRT-engine/blob/main/engines/RTX3090/model_onnx.plan) | `engines/RTX3090/model_onnx.plan` | | GeForce RTX 4090 | [HuggingFace](https://huggingface.co/Tencent-Hunyuan/TensorRT-engine/blob/main/engines/RTX4090/model_onnx.plan) | `engines/RTX4090/model_onnx.plan` | | A100 | [HuggingFace](https://huggingface.co/Tencent-Hunyuan/TensorRT-engine/blob/main/engines/A100/model_onnx.plan) | `engines/A100/model_onnx.plan` | Use the following command to download and place the engine in the specified location. ```shell huggingface-cli download Tencent-Hunyuan/TensorRT-engine --local-dir ./ckpts/t2i/model_trt/engine ``` ### Method 2: Build your own engine If you are using a different GPU, you can build the engine using the following command. ```shell # Set the TensorRT build environment variables first. We provide a script to set up the environment. source trt/activate.sh # Method 1: Build the TensorRT engine. By default, it will read the `ckpts` folder in the current directory. sh trt/build_engine.sh # Method 2: If your model directory is not `ckpts`, you need to specify the model directory. sh trt/build_engine.sh ``` 4. Run the inference using the TensorRT model. ```shell # Run the inference using the prompt-enhanced model + HunyuanDiT TensorRT model. python sample_t2i.py --prompt "渔舟唱晚" --infer-mode trt # Close prompt enhancement. (save GPU memory) python sample_t2i.py --prompt "渔舟唱晚" --infer-mode trt --no-enhance ```