dylanebert
		
	commited on
		
		
					Commit 
							
							·
						
						a3fbb44
	
1
								Parent(s):
							
							1144e46
								
embed mv_unet
Browse files- mv_unet.py +0 -1005
- pipeline.py +1064 -25
    	
        mv_unet.py
    DELETED
    
    | @@ -1,1005 +0,0 @@ | |
| 1 | 
            -
            import math
         | 
| 2 | 
            -
            import numpy as np
         | 
| 3 | 
            -
            from inspect import isfunction
         | 
| 4 | 
            -
            from typing import Optional, Any, List
         | 
| 5 | 
            -
             | 
| 6 | 
            -
            import torch
         | 
| 7 | 
            -
            import torch.nn as nn
         | 
| 8 | 
            -
            import torch.nn.functional as F
         | 
| 9 | 
            -
            from einops import rearrange, repeat
         | 
| 10 | 
            -
             | 
| 11 | 
            -
            from diffusers.configuration_utils import ConfigMixin
         | 
| 12 | 
            -
            from diffusers.models.modeling_utils import ModelMixin
         | 
| 13 | 
            -
             | 
| 14 | 
            -
            # require xformers!
         | 
| 15 | 
            -
            import xformers
         | 
| 16 | 
            -
            import xformers.ops
         | 
| 17 | 
            -
             | 
| 18 | 
            -
            from kiui.cam import orbit_camera
         | 
| 19 | 
            -
             | 
| 20 | 
            -
            def get_camera(
         | 
| 21 | 
            -
                num_frames, elevation=15, azimuth_start=0, azimuth_span=360, blender_coord=True, extra_view=False,
         | 
| 22 | 
            -
            ):
         | 
| 23 | 
            -
                angle_gap = azimuth_span / num_frames
         | 
| 24 | 
            -
                cameras = []
         | 
| 25 | 
            -
                for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap):
         | 
| 26 | 
            -
                    
         | 
| 27 | 
            -
                    pose = orbit_camera(-elevation, azimuth, radius=1) # kiui's elevation is negated, [4, 4]
         | 
| 28 | 
            -
             | 
| 29 | 
            -
                    # opengl to blender
         | 
| 30 | 
            -
                    if blender_coord:
         | 
| 31 | 
            -
                        pose[2] *= -1
         | 
| 32 | 
            -
                        pose[[1, 2]] = pose[[2, 1]]
         | 
| 33 | 
            -
             | 
| 34 | 
            -
                    cameras.append(pose.flatten())
         | 
| 35 | 
            -
             | 
| 36 | 
            -
                if extra_view:
         | 
| 37 | 
            -
                    cameras.append(np.zeros_like(cameras[0]))
         | 
| 38 | 
            -
             | 
| 39 | 
            -
                return torch.from_numpy(np.stack(cameras, axis=0)).float() # [num_frames, 16]
         | 
| 40 | 
            -
             | 
| 41 | 
            -
             | 
| 42 | 
            -
            def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
         | 
| 43 | 
            -
                """
         | 
| 44 | 
            -
                Create sinusoidal timestep embeddings.
         | 
| 45 | 
            -
                :param timesteps: a 1-D Tensor of N indices, one per batch element.
         | 
| 46 | 
            -
                                  These may be fractional.
         | 
| 47 | 
            -
                :param dim: the dimension of the output.
         | 
| 48 | 
            -
                :param max_period: controls the minimum frequency of the embeddings.
         | 
| 49 | 
            -
                :return: an [N x dim] Tensor of positional embeddings.
         | 
| 50 | 
            -
                """
         | 
| 51 | 
            -
                if not repeat_only:
         | 
| 52 | 
            -
                    half = dim // 2
         | 
| 53 | 
            -
                    freqs = torch.exp(
         | 
| 54 | 
            -
                        -math.log(max_period)
         | 
| 55 | 
            -
                        * torch.arange(start=0, end=half, dtype=torch.float32)
         | 
| 56 | 
            -
                        / half
         | 
| 57 | 
            -
                    ).to(device=timesteps.device)
         | 
| 58 | 
            -
                    args = timesteps[:, None] * freqs[None]
         | 
| 59 | 
            -
                    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
         | 
| 60 | 
            -
                    if dim % 2:
         | 
| 61 | 
            -
                        embedding = torch.cat(
         | 
| 62 | 
            -
                            [embedding, torch.zeros_like(embedding[:, :1])], dim=-1
         | 
| 63 | 
            -
                        )
         | 
| 64 | 
            -
                else:
         | 
| 65 | 
            -
                    embedding = repeat(timesteps, "b -> b d", d=dim)
         | 
| 66 | 
            -
                # import pdb; pdb.set_trace()
         | 
| 67 | 
            -
                return embedding
         | 
| 68 | 
            -
             | 
| 69 | 
            -
             | 
| 70 | 
            -
            def zero_module(module):
         | 
| 71 | 
            -
                """
         | 
| 72 | 
            -
                Zero out the parameters of a module and return it.
         | 
| 73 | 
            -
                """
         | 
| 74 | 
            -
                for p in module.parameters():
         | 
| 75 | 
            -
                    p.detach().zero_()
         | 
| 76 | 
            -
                return module
         | 
| 77 | 
            -
             | 
| 78 | 
            -
             | 
| 79 | 
            -
            def conv_nd(dims, *args, **kwargs):
         | 
| 80 | 
            -
                """
         | 
| 81 | 
            -
                Create a 1D, 2D, or 3D convolution module.
         | 
| 82 | 
            -
                """
         | 
| 83 | 
            -
                if dims == 1:
         | 
| 84 | 
            -
                    return nn.Conv1d(*args, **kwargs)
         | 
| 85 | 
            -
                elif dims == 2:
         | 
| 86 | 
            -
                    return nn.Conv2d(*args, **kwargs)
         | 
| 87 | 
            -
                elif dims == 3:
         | 
| 88 | 
            -
                    return nn.Conv3d(*args, **kwargs)
         | 
| 89 | 
            -
                raise ValueError(f"unsupported dimensions: {dims}")
         | 
| 90 | 
            -
             | 
| 91 | 
            -
             | 
| 92 | 
            -
            def avg_pool_nd(dims, *args, **kwargs):
         | 
| 93 | 
            -
                """
         | 
| 94 | 
            -
                Create a 1D, 2D, or 3D average pooling module.
         | 
| 95 | 
            -
                """
         | 
| 96 | 
            -
                if dims == 1:
         | 
| 97 | 
            -
                    return nn.AvgPool1d(*args, **kwargs)
         | 
| 98 | 
            -
                elif dims == 2:
         | 
| 99 | 
            -
                    return nn.AvgPool2d(*args, **kwargs)
         | 
| 100 | 
            -
                elif dims == 3:
         | 
| 101 | 
            -
                    return nn.AvgPool3d(*args, **kwargs)
         | 
| 102 | 
            -
                raise ValueError(f"unsupported dimensions: {dims}")
         | 
| 103 | 
            -
             | 
| 104 | 
            -
             | 
| 105 | 
            -
            def default(val, d):
         | 
| 106 | 
            -
                if val is not None:
         | 
| 107 | 
            -
                    return val
         | 
| 108 | 
            -
                return d() if isfunction(d) else d
         | 
| 109 | 
            -
             | 
| 110 | 
            -
             | 
| 111 | 
            -
            class GEGLU(nn.Module):
         | 
| 112 | 
            -
                def __init__(self, dim_in, dim_out):
         | 
| 113 | 
            -
                    super().__init__()
         | 
| 114 | 
            -
                    self.proj = nn.Linear(dim_in, dim_out * 2)
         | 
| 115 | 
            -
             | 
| 116 | 
            -
                def forward(self, x):
         | 
| 117 | 
            -
                    x, gate = self.proj(x).chunk(2, dim=-1)
         | 
| 118 | 
            -
                    return x * F.gelu(gate)
         | 
| 119 | 
            -
             | 
| 120 | 
            -
             | 
| 121 | 
            -
            class FeedForward(nn.Module):
         | 
| 122 | 
            -
                def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
         | 
| 123 | 
            -
                    super().__init__()
         | 
| 124 | 
            -
                    inner_dim = int(dim * mult)
         | 
| 125 | 
            -
                    dim_out = default(dim_out, dim)
         | 
| 126 | 
            -
                    project_in = (
         | 
| 127 | 
            -
                        nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
         | 
| 128 | 
            -
                        if not glu
         | 
| 129 | 
            -
                        else GEGLU(dim, inner_dim)
         | 
| 130 | 
            -
                    )
         | 
| 131 | 
            -
             | 
| 132 | 
            -
                    self.net = nn.Sequential(
         | 
| 133 | 
            -
                        project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
         | 
| 134 | 
            -
                    )
         | 
| 135 | 
            -
             | 
| 136 | 
            -
                def forward(self, x):
         | 
| 137 | 
            -
                    return self.net(x)
         | 
| 138 | 
            -
             | 
| 139 | 
            -
             | 
| 140 | 
            -
            class MemoryEfficientCrossAttention(nn.Module):
         | 
| 141 | 
            -
                # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
         | 
| 142 | 
            -
                def __init__(
         | 
| 143 | 
            -
                        self, 
         | 
| 144 | 
            -
                        query_dim, 
         | 
| 145 | 
            -
                        context_dim=None, 
         | 
| 146 | 
            -
                        heads=8, 
         | 
| 147 | 
            -
                        dim_head=64, 
         | 
| 148 | 
            -
                        dropout=0.0,
         | 
| 149 | 
            -
                        ip_dim=0,
         | 
| 150 | 
            -
                        ip_weight=1,
         | 
| 151 | 
            -
                    ):
         | 
| 152 | 
            -
                    super().__init__()
         | 
| 153 | 
            -
                    
         | 
| 154 | 
            -
                    inner_dim = dim_head * heads
         | 
| 155 | 
            -
                    context_dim = default(context_dim, query_dim)
         | 
| 156 | 
            -
             | 
| 157 | 
            -
                    self.heads = heads
         | 
| 158 | 
            -
                    self.dim_head = dim_head
         | 
| 159 | 
            -
             | 
| 160 | 
            -
                    self.ip_dim = ip_dim
         | 
| 161 | 
            -
                    self.ip_weight = ip_weight
         | 
| 162 | 
            -
             | 
| 163 | 
            -
                    if self.ip_dim > 0:
         | 
| 164 | 
            -
                        self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 165 | 
            -
                        self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 166 | 
            -
             | 
| 167 | 
            -
                    self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
         | 
| 168 | 
            -
                    self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 169 | 
            -
                    self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 170 | 
            -
             | 
| 171 | 
            -
                    self.to_out = nn.Sequential(
         | 
| 172 | 
            -
                        nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
         | 
| 173 | 
            -
                    )
         | 
| 174 | 
            -
                    self.attention_op: Optional[Any] = None
         | 
| 175 | 
            -
             | 
| 176 | 
            -
                def forward(self, x, context=None):
         | 
| 177 | 
            -
                    q = self.to_q(x)
         | 
| 178 | 
            -
                    context = default(context, x)
         | 
| 179 | 
            -
             | 
| 180 | 
            -
                    if self.ip_dim > 0:
         | 
| 181 | 
            -
                        # context: [B, 77 + 16(ip), 1024]
         | 
| 182 | 
            -
                        token_len = context.shape[1]
         | 
| 183 | 
            -
                        context_ip = context[:, -self.ip_dim :, :]
         | 
| 184 | 
            -
                        k_ip = self.to_k_ip(context_ip)
         | 
| 185 | 
            -
                        v_ip = self.to_v_ip(context_ip)
         | 
| 186 | 
            -
                        context = context[:, : (token_len - self.ip_dim), :]
         | 
| 187 | 
            -
             | 
| 188 | 
            -
                    k = self.to_k(context)
         | 
| 189 | 
            -
                    v = self.to_v(context)
         | 
| 190 | 
            -
             | 
| 191 | 
            -
                    b, _, _ = q.shape
         | 
| 192 | 
            -
                    q, k, v = map(
         | 
| 193 | 
            -
                        lambda t: t.unsqueeze(3)
         | 
| 194 | 
            -
                        .reshape(b, t.shape[1], self.heads, self.dim_head)
         | 
| 195 | 
            -
                        .permute(0, 2, 1, 3)
         | 
| 196 | 
            -
                        .reshape(b * self.heads, t.shape[1], self.dim_head)
         | 
| 197 | 
            -
                        .contiguous(),
         | 
| 198 | 
            -
                        (q, k, v),
         | 
| 199 | 
            -
                    )
         | 
| 200 | 
            -
             | 
| 201 | 
            -
                    # actually compute the attention, what we cannot get enough of
         | 
| 202 | 
            -
                    out = xformers.ops.memory_efficient_attention(
         | 
| 203 | 
            -
                        q, k, v, attn_bias=None, op=self.attention_op
         | 
| 204 | 
            -
                    )
         | 
| 205 | 
            -
             | 
| 206 | 
            -
                    if self.ip_dim > 0:
         | 
| 207 | 
            -
                        k_ip, v_ip = map(
         | 
| 208 | 
            -
                            lambda t: t.unsqueeze(3)
         | 
| 209 | 
            -
                            .reshape(b, t.shape[1], self.heads, self.dim_head)
         | 
| 210 | 
            -
                            .permute(0, 2, 1, 3)
         | 
| 211 | 
            -
                            .reshape(b * self.heads, t.shape[1], self.dim_head)
         | 
| 212 | 
            -
                            .contiguous(),
         | 
| 213 | 
            -
                            (k_ip, v_ip),
         | 
| 214 | 
            -
                        )
         | 
| 215 | 
            -
                        # actually compute the attention, what we cannot get enough of
         | 
| 216 | 
            -
                        out_ip = xformers.ops.memory_efficient_attention(
         | 
| 217 | 
            -
                            q, k_ip, v_ip, attn_bias=None, op=self.attention_op
         | 
| 218 | 
            -
                        )
         | 
| 219 | 
            -
                        out = out + self.ip_weight * out_ip
         | 
| 220 | 
            -
             | 
| 221 | 
            -
                    out = (
         | 
| 222 | 
            -
                        out.unsqueeze(0)
         | 
| 223 | 
            -
                        .reshape(b, self.heads, out.shape[1], self.dim_head)
         | 
| 224 | 
            -
                        .permute(0, 2, 1, 3)
         | 
| 225 | 
            -
                        .reshape(b, out.shape[1], self.heads * self.dim_head)
         | 
| 226 | 
            -
                    )
         | 
| 227 | 
            -
                    return self.to_out(out)
         | 
| 228 | 
            -
             | 
| 229 | 
            -
             | 
| 230 | 
            -
            class BasicTransformerBlock3D(nn.Module):
         | 
| 231 | 
            -
                
         | 
| 232 | 
            -
                def __init__(
         | 
| 233 | 
            -
                    self,
         | 
| 234 | 
            -
                    dim,
         | 
| 235 | 
            -
                    n_heads,
         | 
| 236 | 
            -
                    d_head,
         | 
| 237 | 
            -
                    context_dim,
         | 
| 238 | 
            -
                    dropout=0.0,
         | 
| 239 | 
            -
                    gated_ff=True,
         | 
| 240 | 
            -
                    ip_dim=0,
         | 
| 241 | 
            -
                    ip_weight=1,
         | 
| 242 | 
            -
                ):
         | 
| 243 | 
            -
                    super().__init__()
         | 
| 244 | 
            -
             | 
| 245 | 
            -
                    self.attn1 = MemoryEfficientCrossAttention(
         | 
| 246 | 
            -
                        query_dim=dim,
         | 
| 247 | 
            -
                        context_dim=None, # self-attention
         | 
| 248 | 
            -
                        heads=n_heads,
         | 
| 249 | 
            -
                        dim_head=d_head,
         | 
| 250 | 
            -
                        dropout=dropout,
         | 
| 251 | 
            -
                    )
         | 
| 252 | 
            -
                    self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
         | 
| 253 | 
            -
                    self.attn2 = MemoryEfficientCrossAttention(
         | 
| 254 | 
            -
                        query_dim=dim,
         | 
| 255 | 
            -
                        context_dim=context_dim,
         | 
| 256 | 
            -
                        heads=n_heads,
         | 
| 257 | 
            -
                        dim_head=d_head,
         | 
| 258 | 
            -
                        dropout=dropout,
         | 
| 259 | 
            -
                        # ip only applies to cross-attention
         | 
| 260 | 
            -
                        ip_dim=ip_dim,
         | 
| 261 | 
            -
                        ip_weight=ip_weight,
         | 
| 262 | 
            -
                    ) 
         | 
| 263 | 
            -
                    self.norm1 = nn.LayerNorm(dim)
         | 
| 264 | 
            -
                    self.norm2 = nn.LayerNorm(dim)
         | 
| 265 | 
            -
                    self.norm3 = nn.LayerNorm(dim)
         | 
| 266 | 
            -
             | 
| 267 | 
            -
                def forward(self, x, context=None, num_frames=1):
         | 
| 268 | 
            -
                    x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous()
         | 
| 269 | 
            -
                    x = self.attn1(self.norm1(x), context=None) + x
         | 
| 270 | 
            -
                    x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous()
         | 
| 271 | 
            -
                    x = self.attn2(self.norm2(x), context=context) + x
         | 
| 272 | 
            -
                    x = self.ff(self.norm3(x)) + x
         | 
| 273 | 
            -
                    return x
         | 
| 274 | 
            -
             | 
| 275 | 
            -
             | 
| 276 | 
            -
            class SpatialTransformer3D(nn.Module):
         | 
| 277 | 
            -
             | 
| 278 | 
            -
                def __init__(
         | 
| 279 | 
            -
                    self,
         | 
| 280 | 
            -
                    in_channels,
         | 
| 281 | 
            -
                    n_heads,
         | 
| 282 | 
            -
                    d_head,
         | 
| 283 | 
            -
                    context_dim, # cross attention input dim
         | 
| 284 | 
            -
                    depth=1,
         | 
| 285 | 
            -
                    dropout=0.0,
         | 
| 286 | 
            -
                    ip_dim=0,
         | 
| 287 | 
            -
                    ip_weight=1,
         | 
| 288 | 
            -
                ):
         | 
| 289 | 
            -
                    super().__init__()
         | 
| 290 | 
            -
             | 
| 291 | 
            -
                    if not isinstance(context_dim, list):
         | 
| 292 | 
            -
                        context_dim = [context_dim]
         | 
| 293 | 
            -
             | 
| 294 | 
            -
                    self.in_channels = in_channels
         | 
| 295 | 
            -
             | 
| 296 | 
            -
                    inner_dim = n_heads * d_head
         | 
| 297 | 
            -
                    self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
         | 
| 298 | 
            -
                    self.proj_in = nn.Linear(in_channels, inner_dim)
         | 
| 299 | 
            -
             | 
| 300 | 
            -
                    self.transformer_blocks = nn.ModuleList(
         | 
| 301 | 
            -
                        [
         | 
| 302 | 
            -
                            BasicTransformerBlock3D(
         | 
| 303 | 
            -
                                inner_dim,
         | 
| 304 | 
            -
                                n_heads,
         | 
| 305 | 
            -
                                d_head,
         | 
| 306 | 
            -
                                context_dim=context_dim[d],
         | 
| 307 | 
            -
                                dropout=dropout,
         | 
| 308 | 
            -
                                ip_dim=ip_dim,
         | 
| 309 | 
            -
                                ip_weight=ip_weight,
         | 
| 310 | 
            -
                            )
         | 
| 311 | 
            -
                            for d in range(depth)
         | 
| 312 | 
            -
                        ]
         | 
| 313 | 
            -
                    )
         | 
| 314 | 
            -
                    
         | 
| 315 | 
            -
                    self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
         | 
| 316 | 
            -
                    
         | 
| 317 | 
            -
             | 
| 318 | 
            -
                def forward(self, x, context=None, num_frames=1):
         | 
| 319 | 
            -
                    # note: if no context is given, cross-attention defaults to self-attention
         | 
| 320 | 
            -
                    if not isinstance(context, list):
         | 
| 321 | 
            -
                        context = [context]
         | 
| 322 | 
            -
                    b, c, h, w = x.shape
         | 
| 323 | 
            -
                    x_in = x
         | 
| 324 | 
            -
                    x = self.norm(x)
         | 
| 325 | 
            -
                    x = rearrange(x, "b c h w -> b (h w) c").contiguous()
         | 
| 326 | 
            -
                    x = self.proj_in(x)
         | 
| 327 | 
            -
                    for i, block in enumerate(self.transformer_blocks):
         | 
| 328 | 
            -
                        x = block(x, context=context[i], num_frames=num_frames)
         | 
| 329 | 
            -
                    x = self.proj_out(x)
         | 
| 330 | 
            -
                    x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
         | 
| 331 | 
            -
                    
         | 
| 332 | 
            -
                    return x + x_in
         | 
| 333 | 
            -
             | 
| 334 | 
            -
             | 
| 335 | 
            -
            class PerceiverAttention(nn.Module):
         | 
| 336 | 
            -
                def __init__(self, *, dim, dim_head=64, heads=8):
         | 
| 337 | 
            -
                    super().__init__()
         | 
| 338 | 
            -
                    self.scale = dim_head ** -0.5
         | 
| 339 | 
            -
                    self.dim_head = dim_head
         | 
| 340 | 
            -
                    self.heads = heads
         | 
| 341 | 
            -
                    inner_dim = dim_head * heads
         | 
| 342 | 
            -
             | 
| 343 | 
            -
                    self.norm1 = nn.LayerNorm(dim)
         | 
| 344 | 
            -
                    self.norm2 = nn.LayerNorm(dim)
         | 
| 345 | 
            -
             | 
| 346 | 
            -
                    self.to_q = nn.Linear(dim, inner_dim, bias=False)
         | 
| 347 | 
            -
                    self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
         | 
| 348 | 
            -
                    self.to_out = nn.Linear(inner_dim, dim, bias=False)
         | 
| 349 | 
            -
             | 
| 350 | 
            -
                def forward(self, x, latents):
         | 
| 351 | 
            -
                    """
         | 
| 352 | 
            -
                    Args:
         | 
| 353 | 
            -
                        x (torch.Tensor): image features
         | 
| 354 | 
            -
                            shape (b, n1, D)
         | 
| 355 | 
            -
                        latent (torch.Tensor): latent features
         | 
| 356 | 
            -
                            shape (b, n2, D)
         | 
| 357 | 
            -
                    """
         | 
| 358 | 
            -
                    x = self.norm1(x)
         | 
| 359 | 
            -
                    latents = self.norm2(latents)
         | 
| 360 | 
            -
             | 
| 361 | 
            -
                    b, l, _ = latents.shape
         | 
| 362 | 
            -
             | 
| 363 | 
            -
                    q = self.to_q(latents)
         | 
| 364 | 
            -
                    kv_input = torch.cat((x, latents), dim=-2)
         | 
| 365 | 
            -
                    k, v = self.to_kv(kv_input).chunk(2, dim=-1)
         | 
| 366 | 
            -
             | 
| 367 | 
            -
                    q, k, v = map(
         | 
| 368 | 
            -
                        lambda t: t.reshape(b, t.shape[1], self.heads, -1)
         | 
| 369 | 
            -
                        .transpose(1, 2)
         | 
| 370 | 
            -
                        .reshape(b, self.heads, t.shape[1], -1)
         | 
| 371 | 
            -
                        .contiguous(),
         | 
| 372 | 
            -
                        (q, k, v),
         | 
| 373 | 
            -
                    )
         | 
| 374 | 
            -
             | 
| 375 | 
            -
                    # attention
         | 
| 376 | 
            -
                    scale = 1 / math.sqrt(math.sqrt(self.dim_head))
         | 
| 377 | 
            -
                    weight = (q * scale) @ (k * scale).transpose(-2, -1)  # More stable with f16 than dividing afterwards
         | 
| 378 | 
            -
                    weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
         | 
| 379 | 
            -
                    out = weight @ v
         | 
| 380 | 
            -
             | 
| 381 | 
            -
                    out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
         | 
| 382 | 
            -
             | 
| 383 | 
            -
                    return self.to_out(out)
         | 
| 384 | 
            -
             | 
| 385 | 
            -
             | 
| 386 | 
            -
            class Resampler(nn.Module):
         | 
| 387 | 
            -
                def __init__(
         | 
| 388 | 
            -
                    self,
         | 
| 389 | 
            -
                    dim=1024,
         | 
| 390 | 
            -
                    depth=8,
         | 
| 391 | 
            -
                    dim_head=64,
         | 
| 392 | 
            -
                    heads=16,
         | 
| 393 | 
            -
                    num_queries=8,
         | 
| 394 | 
            -
                    embedding_dim=768,
         | 
| 395 | 
            -
                    output_dim=1024,
         | 
| 396 | 
            -
                    ff_mult=4,
         | 
| 397 | 
            -
                ):
         | 
| 398 | 
            -
                    super().__init__()
         | 
| 399 | 
            -
                    self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5)
         | 
| 400 | 
            -
                    self.proj_in = nn.Linear(embedding_dim, dim)
         | 
| 401 | 
            -
                    self.proj_out = nn.Linear(dim, output_dim)
         | 
| 402 | 
            -
                    self.norm_out = nn.LayerNorm(output_dim)
         | 
| 403 | 
            -
             | 
| 404 | 
            -
                    self.layers = nn.ModuleList([])
         | 
| 405 | 
            -
                    for _ in range(depth):
         | 
| 406 | 
            -
                        self.layers.append(
         | 
| 407 | 
            -
                            nn.ModuleList(
         | 
| 408 | 
            -
                                [
         | 
| 409 | 
            -
                                    PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
         | 
| 410 | 
            -
                                    nn.Sequential(
         | 
| 411 | 
            -
                                        nn.LayerNorm(dim),
         | 
| 412 | 
            -
                                        nn.Linear(dim, dim * ff_mult, bias=False),
         | 
| 413 | 
            -
                                        nn.GELU(),
         | 
| 414 | 
            -
                                        nn.Linear(dim * ff_mult, dim, bias=False),
         | 
| 415 | 
            -
                                    )
         | 
| 416 | 
            -
                                ]
         | 
| 417 | 
            -
                            )
         | 
| 418 | 
            -
                        )
         | 
| 419 | 
            -
             | 
| 420 | 
            -
                def forward(self, x):
         | 
| 421 | 
            -
                    latents = self.latents.repeat(x.size(0), 1, 1)
         | 
| 422 | 
            -
                    x = self.proj_in(x)
         | 
| 423 | 
            -
                    for attn, ff in self.layers:
         | 
| 424 | 
            -
                        latents = attn(x, latents) + latents
         | 
| 425 | 
            -
                        latents = ff(latents) + latents
         | 
| 426 | 
            -
             | 
| 427 | 
            -
                    latents = self.proj_out(latents)
         | 
| 428 | 
            -
                    return self.norm_out(latents)
         | 
| 429 | 
            -
             | 
| 430 | 
            -
             | 
| 431 | 
            -
            class CondSequential(nn.Sequential):
         | 
| 432 | 
            -
                """
         | 
| 433 | 
            -
                A sequential module that passes timestep embeddings to the children that
         | 
| 434 | 
            -
                support it as an extra input.
         | 
| 435 | 
            -
                """
         | 
| 436 | 
            -
             | 
| 437 | 
            -
                def forward(self, x, emb, context=None, num_frames=1):
         | 
| 438 | 
            -
                    for layer in self:
         | 
| 439 | 
            -
                        if isinstance(layer, ResBlock):
         | 
| 440 | 
            -
                            x = layer(x, emb)
         | 
| 441 | 
            -
                        elif isinstance(layer, SpatialTransformer3D):
         | 
| 442 | 
            -
                            x = layer(x, context, num_frames=num_frames)
         | 
| 443 | 
            -
                        else:
         | 
| 444 | 
            -
                            x = layer(x)
         | 
| 445 | 
            -
                    return x
         | 
| 446 | 
            -
             | 
| 447 | 
            -
             | 
| 448 | 
            -
            class Upsample(nn.Module):
         | 
| 449 | 
            -
                """
         | 
| 450 | 
            -
                An upsampling layer with an optional convolution.
         | 
| 451 | 
            -
                :param channels: channels in the inputs and outputs.
         | 
| 452 | 
            -
                :param use_conv: a bool determining if a convolution is applied.
         | 
| 453 | 
            -
                :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
         | 
| 454 | 
            -
                             upsampling occurs in the inner-two dimensions.
         | 
| 455 | 
            -
                """
         | 
| 456 | 
            -
             | 
| 457 | 
            -
                def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
         | 
| 458 | 
            -
                    super().__init__()
         | 
| 459 | 
            -
                    self.channels = channels
         | 
| 460 | 
            -
                    self.out_channels = out_channels or channels
         | 
| 461 | 
            -
                    self.use_conv = use_conv
         | 
| 462 | 
            -
                    self.dims = dims
         | 
| 463 | 
            -
                    if use_conv:
         | 
| 464 | 
            -
                        self.conv = conv_nd(
         | 
| 465 | 
            -
                            dims, self.channels, self.out_channels, 3, padding=padding
         | 
| 466 | 
            -
                        )
         | 
| 467 | 
            -
             | 
| 468 | 
            -
                def forward(self, x):
         | 
| 469 | 
            -
                    assert x.shape[1] == self.channels
         | 
| 470 | 
            -
                    if self.dims == 3:
         | 
| 471 | 
            -
                        x = F.interpolate(
         | 
| 472 | 
            -
                            x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
         | 
| 473 | 
            -
                        )
         | 
| 474 | 
            -
                    else:
         | 
| 475 | 
            -
                        x = F.interpolate(x, scale_factor=2, mode="nearest")
         | 
| 476 | 
            -
                    if self.use_conv:
         | 
| 477 | 
            -
                        x = self.conv(x)
         | 
| 478 | 
            -
                    return x
         | 
| 479 | 
            -
             | 
| 480 | 
            -
             | 
| 481 | 
            -
            class Downsample(nn.Module):
         | 
| 482 | 
            -
                """
         | 
| 483 | 
            -
                A downsampling layer with an optional convolution.
         | 
| 484 | 
            -
                :param channels: channels in the inputs and outputs.
         | 
| 485 | 
            -
                :param use_conv: a bool determining if a convolution is applied.
         | 
| 486 | 
            -
                :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
         | 
| 487 | 
            -
                             downsampling occurs in the inner-two dimensions.
         | 
| 488 | 
            -
                """
         | 
| 489 | 
            -
             | 
| 490 | 
            -
                def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
         | 
| 491 | 
            -
                    super().__init__()
         | 
| 492 | 
            -
                    self.channels = channels
         | 
| 493 | 
            -
                    self.out_channels = out_channels or channels
         | 
| 494 | 
            -
                    self.use_conv = use_conv
         | 
| 495 | 
            -
                    self.dims = dims
         | 
| 496 | 
            -
                    stride = 2 if dims != 3 else (1, 2, 2)
         | 
| 497 | 
            -
                    if use_conv:
         | 
| 498 | 
            -
                        self.op = conv_nd(
         | 
| 499 | 
            -
                            dims,
         | 
| 500 | 
            -
                            self.channels,
         | 
| 501 | 
            -
                            self.out_channels,
         | 
| 502 | 
            -
                            3,
         | 
| 503 | 
            -
                            stride=stride,
         | 
| 504 | 
            -
                            padding=padding,
         | 
| 505 | 
            -
                        )
         | 
| 506 | 
            -
                    else:
         | 
| 507 | 
            -
                        assert self.channels == self.out_channels
         | 
| 508 | 
            -
                        self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
         | 
| 509 | 
            -
             | 
| 510 | 
            -
                def forward(self, x):
         | 
| 511 | 
            -
                    assert x.shape[1] == self.channels
         | 
| 512 | 
            -
                    return self.op(x)
         | 
| 513 | 
            -
             | 
| 514 | 
            -
             | 
| 515 | 
            -
            class ResBlock(nn.Module):
         | 
| 516 | 
            -
                """
         | 
| 517 | 
            -
                A residual block that can optionally change the number of channels.
         | 
| 518 | 
            -
                :param channels: the number of input channels.
         | 
| 519 | 
            -
                :param emb_channels: the number of timestep embedding channels.
         | 
| 520 | 
            -
                :param dropout: the rate of dropout.
         | 
| 521 | 
            -
                :param out_channels: if specified, the number of out channels.
         | 
| 522 | 
            -
                :param use_conv: if True and out_channels is specified, use a spatial
         | 
| 523 | 
            -
                    convolution instead of a smaller 1x1 convolution to change the
         | 
| 524 | 
            -
                    channels in the skip connection.
         | 
| 525 | 
            -
                :param dims: determines if the signal is 1D, 2D, or 3D.
         | 
| 526 | 
            -
                :param up: if True, use this block for upsampling.
         | 
| 527 | 
            -
                :param down: if True, use this block for downsampling.
         | 
| 528 | 
            -
                """
         | 
| 529 | 
            -
             | 
| 530 | 
            -
                def __init__(
         | 
| 531 | 
            -
                    self,
         | 
| 532 | 
            -
                    channels,
         | 
| 533 | 
            -
                    emb_channels,
         | 
| 534 | 
            -
                    dropout,
         | 
| 535 | 
            -
                    out_channels=None,
         | 
| 536 | 
            -
                    use_conv=False,
         | 
| 537 | 
            -
                    use_scale_shift_norm=False,
         | 
| 538 | 
            -
                    dims=2,
         | 
| 539 | 
            -
                    up=False,
         | 
| 540 | 
            -
                    down=False,
         | 
| 541 | 
            -
                ):
         | 
| 542 | 
            -
                    super().__init__()
         | 
| 543 | 
            -
                    self.channels = channels
         | 
| 544 | 
            -
                    self.emb_channels = emb_channels
         | 
| 545 | 
            -
                    self.dropout = dropout
         | 
| 546 | 
            -
                    self.out_channels = out_channels or channels
         | 
| 547 | 
            -
                    self.use_conv = use_conv
         | 
| 548 | 
            -
                    self.use_scale_shift_norm = use_scale_shift_norm
         | 
| 549 | 
            -
             | 
| 550 | 
            -
                    self.in_layers = nn.Sequential(
         | 
| 551 | 
            -
                        nn.GroupNorm(32, channels),
         | 
| 552 | 
            -
                        nn.SiLU(),
         | 
| 553 | 
            -
                        conv_nd(dims, channels, self.out_channels, 3, padding=1),
         | 
| 554 | 
            -
                    )
         | 
| 555 | 
            -
             | 
| 556 | 
            -
                    self.updown = up or down
         | 
| 557 | 
            -
             | 
| 558 | 
            -
                    if up:
         | 
| 559 | 
            -
                        self.h_upd = Upsample(channels, False, dims)
         | 
| 560 | 
            -
                        self.x_upd = Upsample(channels, False, dims)
         | 
| 561 | 
            -
                    elif down:
         | 
| 562 | 
            -
                        self.h_upd = Downsample(channels, False, dims)
         | 
| 563 | 
            -
                        self.x_upd = Downsample(channels, False, dims)
         | 
| 564 | 
            -
                    else:
         | 
| 565 | 
            -
                        self.h_upd = self.x_upd = nn.Identity()
         | 
| 566 | 
            -
             | 
| 567 | 
            -
                    self.emb_layers = nn.Sequential(
         | 
| 568 | 
            -
                        nn.SiLU(),
         | 
| 569 | 
            -
                        nn.Linear(
         | 
| 570 | 
            -
                            emb_channels,
         | 
| 571 | 
            -
                            2 * self.out_channels if use_scale_shift_norm else self.out_channels,
         | 
| 572 | 
            -
                        ),
         | 
| 573 | 
            -
                    )
         | 
| 574 | 
            -
                    self.out_layers = nn.Sequential(
         | 
| 575 | 
            -
                        nn.GroupNorm(32, self.out_channels),
         | 
| 576 | 
            -
                        nn.SiLU(),
         | 
| 577 | 
            -
                        nn.Dropout(p=dropout),
         | 
| 578 | 
            -
                        zero_module(
         | 
| 579 | 
            -
                            conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
         | 
| 580 | 
            -
                        ),
         | 
| 581 | 
            -
                    )
         | 
| 582 | 
            -
             | 
| 583 | 
            -
                    if self.out_channels == channels:
         | 
| 584 | 
            -
                        self.skip_connection = nn.Identity()
         | 
| 585 | 
            -
                    elif use_conv:
         | 
| 586 | 
            -
                        self.skip_connection = conv_nd(
         | 
| 587 | 
            -
                            dims, channels, self.out_channels, 3, padding=1
         | 
| 588 | 
            -
                        )
         | 
| 589 | 
            -
                    else:
         | 
| 590 | 
            -
                        self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
         | 
| 591 | 
            -
             | 
| 592 | 
            -
                def forward(self, x, emb):
         | 
| 593 | 
            -
                    if self.updown:
         | 
| 594 | 
            -
                        in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
         | 
| 595 | 
            -
                        h = in_rest(x)
         | 
| 596 | 
            -
                        h = self.h_upd(h)
         | 
| 597 | 
            -
                        x = self.x_upd(x)
         | 
| 598 | 
            -
                        h = in_conv(h)
         | 
| 599 | 
            -
                    else:
         | 
| 600 | 
            -
                        h = self.in_layers(x)
         | 
| 601 | 
            -
                    emb_out = self.emb_layers(emb).type(h.dtype)
         | 
| 602 | 
            -
                    while len(emb_out.shape) < len(h.shape):
         | 
| 603 | 
            -
                        emb_out = emb_out[..., None]
         | 
| 604 | 
            -
                    if self.use_scale_shift_norm:
         | 
| 605 | 
            -
                        out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
         | 
| 606 | 
            -
                        scale, shift = torch.chunk(emb_out, 2, dim=1)
         | 
| 607 | 
            -
                        h = out_norm(h) * (1 + scale) + shift
         | 
| 608 | 
            -
                        h = out_rest(h)
         | 
| 609 | 
            -
                    else:
         | 
| 610 | 
            -
                        h = h + emb_out
         | 
| 611 | 
            -
                        h = self.out_layers(h)
         | 
| 612 | 
            -
                    return self.skip_connection(x) + h
         | 
| 613 | 
            -
             | 
| 614 | 
            -
             | 
| 615 | 
            -
            class MultiViewUNetModel(ModelMixin, ConfigMixin):
         | 
| 616 | 
            -
                """
         | 
| 617 | 
            -
                The full multi-view UNet model with attention, timestep embedding and camera embedding.
         | 
| 618 | 
            -
                :param in_channels: channels in the input Tensor.
         | 
| 619 | 
            -
                :param model_channels: base channel count for the model.
         | 
| 620 | 
            -
                :param out_channels: channels in the output Tensor.
         | 
| 621 | 
            -
                :param num_res_blocks: number of residual blocks per downsample.
         | 
| 622 | 
            -
                :param attention_resolutions: a collection of downsample rates at which
         | 
| 623 | 
            -
                    attention will take place. May be a set, list, or tuple.
         | 
| 624 | 
            -
                    For example, if this contains 4, then at 4x downsampling, attention
         | 
| 625 | 
            -
                    will be used.
         | 
| 626 | 
            -
                :param dropout: the dropout probability.
         | 
| 627 | 
            -
                :param channel_mult: channel multiplier for each level of the UNet.
         | 
| 628 | 
            -
                :param conv_resample: if True, use learned convolutions for upsampling and
         | 
| 629 | 
            -
                    downsampling.
         | 
| 630 | 
            -
                :param dims: determines if the signal is 1D, 2D, or 3D.
         | 
| 631 | 
            -
                :param num_classes: if specified (as an int), then this model will be
         | 
| 632 | 
            -
                    class-conditional with `num_classes` classes.
         | 
| 633 | 
            -
                :param num_heads: the number of attention heads in each attention layer.
         | 
| 634 | 
            -
                :param num_heads_channels: if specified, ignore num_heads and instead use
         | 
| 635 | 
            -
                                           a fixed channel width per attention head.
         | 
| 636 | 
            -
                :param num_heads_upsample: works with num_heads to set a different number
         | 
| 637 | 
            -
                                           of heads for upsampling. Deprecated.
         | 
| 638 | 
            -
                :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
         | 
| 639 | 
            -
                :param resblock_updown: use residual blocks for up/downsampling.
         | 
| 640 | 
            -
                :param use_new_attention_order: use a different attention pattern for potentially
         | 
| 641 | 
            -
                                                increased efficiency.
         | 
| 642 | 
            -
                :param camera_dim: dimensionality of camera input.
         | 
| 643 | 
            -
                """
         | 
| 644 | 
            -
             | 
| 645 | 
            -
                def __init__(
         | 
| 646 | 
            -
                    self,
         | 
| 647 | 
            -
                    image_size,
         | 
| 648 | 
            -
                    in_channels,
         | 
| 649 | 
            -
                    model_channels,
         | 
| 650 | 
            -
                    out_channels,
         | 
| 651 | 
            -
                    num_res_blocks,
         | 
| 652 | 
            -
                    attention_resolutions,
         | 
| 653 | 
            -
                    dropout=0,
         | 
| 654 | 
            -
                    channel_mult=(1, 2, 4, 8),
         | 
| 655 | 
            -
                    conv_resample=True,
         | 
| 656 | 
            -
                    dims=2,
         | 
| 657 | 
            -
                    num_classes=None,
         | 
| 658 | 
            -
                    num_heads=-1,
         | 
| 659 | 
            -
                    num_head_channels=-1,
         | 
| 660 | 
            -
                    num_heads_upsample=-1,
         | 
| 661 | 
            -
                    use_scale_shift_norm=False,
         | 
| 662 | 
            -
                    resblock_updown=False,
         | 
| 663 | 
            -
                    transformer_depth=1,
         | 
| 664 | 
            -
                    context_dim=None,
         | 
| 665 | 
            -
                    n_embed=None,
         | 
| 666 | 
            -
                    num_attention_blocks=None,
         | 
| 667 | 
            -
                    adm_in_channels=None,
         | 
| 668 | 
            -
                    camera_dim=None,
         | 
| 669 | 
            -
                    ip_dim=0, # imagedream uses ip_dim > 0
         | 
| 670 | 
            -
                    ip_weight=1.0,
         | 
| 671 | 
            -
                    **kwargs,
         | 
| 672 | 
            -
                ):
         | 
| 673 | 
            -
                    super().__init__()
         | 
| 674 | 
            -
                    assert context_dim is not None
         | 
| 675 | 
            -
                    
         | 
| 676 | 
            -
                    if num_heads_upsample == -1:
         | 
| 677 | 
            -
                        num_heads_upsample = num_heads
         | 
| 678 | 
            -
             | 
| 679 | 
            -
                    if num_heads == -1:
         | 
| 680 | 
            -
                        assert (
         | 
| 681 | 
            -
                            num_head_channels != -1
         | 
| 682 | 
            -
                        ), "Either num_heads or num_head_channels has to be set"
         | 
| 683 | 
            -
             | 
| 684 | 
            -
                    if num_head_channels == -1:
         | 
| 685 | 
            -
                        assert (
         | 
| 686 | 
            -
                            num_heads != -1
         | 
| 687 | 
            -
                        ), "Either num_heads or num_head_channels has to be set"
         | 
| 688 | 
            -
             | 
| 689 | 
            -
                    self.image_size = image_size
         | 
| 690 | 
            -
                    self.in_channels = in_channels
         | 
| 691 | 
            -
                    self.model_channels = model_channels
         | 
| 692 | 
            -
                    self.out_channels = out_channels
         | 
| 693 | 
            -
                    if isinstance(num_res_blocks, int):
         | 
| 694 | 
            -
                        self.num_res_blocks = len(channel_mult) * [num_res_blocks]
         | 
| 695 | 
            -
                    else:
         | 
| 696 | 
            -
                        if len(num_res_blocks) != len(channel_mult):
         | 
| 697 | 
            -
                            raise ValueError(
         | 
| 698 | 
            -
                                "provide num_res_blocks either as an int (globally constant) or "
         | 
| 699 | 
            -
                                "as a list/tuple (per-level) with the same length as channel_mult"
         | 
| 700 | 
            -
                            )
         | 
| 701 | 
            -
                        self.num_res_blocks = num_res_blocks
         | 
| 702 | 
            -
                    
         | 
| 703 | 
            -
                    if num_attention_blocks is not None:
         | 
| 704 | 
            -
                        assert len(num_attention_blocks) == len(self.num_res_blocks)
         | 
| 705 | 
            -
                        assert all(
         | 
| 706 | 
            -
                            map(
         | 
| 707 | 
            -
                                lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
         | 
| 708 | 
            -
                                range(len(num_attention_blocks)),
         | 
| 709 | 
            -
                            )
         | 
| 710 | 
            -
                        )
         | 
| 711 | 
            -
                        print(
         | 
| 712 | 
            -
                            f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
         | 
| 713 | 
            -
                            f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
         | 
| 714 | 
            -
                            f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
         | 
| 715 | 
            -
                            f"attention will still not be set."
         | 
| 716 | 
            -
                        )
         | 
| 717 | 
            -
             | 
| 718 | 
            -
                    self.attention_resolutions = attention_resolutions
         | 
| 719 | 
            -
                    self.dropout = dropout
         | 
| 720 | 
            -
                    self.channel_mult = channel_mult
         | 
| 721 | 
            -
                    self.conv_resample = conv_resample
         | 
| 722 | 
            -
                    self.num_classes = num_classes
         | 
| 723 | 
            -
                    self.num_heads = num_heads
         | 
| 724 | 
            -
                    self.num_head_channels = num_head_channels
         | 
| 725 | 
            -
                    self.num_heads_upsample = num_heads_upsample
         | 
| 726 | 
            -
                    self.predict_codebook_ids = n_embed is not None
         | 
| 727 | 
            -
             | 
| 728 | 
            -
                    self.ip_dim = ip_dim
         | 
| 729 | 
            -
                    self.ip_weight = ip_weight
         | 
| 730 | 
            -
             | 
| 731 | 
            -
                    if self.ip_dim > 0:
         | 
| 732 | 
            -
                        self.image_embed = Resampler(
         | 
| 733 | 
            -
                            dim=context_dim,
         | 
| 734 | 
            -
                            depth=4,
         | 
| 735 | 
            -
                            dim_head=64,
         | 
| 736 | 
            -
                            heads=12,
         | 
| 737 | 
            -
                            num_queries=ip_dim,  # num token
         | 
| 738 | 
            -
                            embedding_dim=1280,
         | 
| 739 | 
            -
                            output_dim=context_dim,
         | 
| 740 | 
            -
                            ff_mult=4,
         | 
| 741 | 
            -
                        )
         | 
| 742 | 
            -
             | 
| 743 | 
            -
                    time_embed_dim = model_channels * 4
         | 
| 744 | 
            -
                    self.time_embed = nn.Sequential(
         | 
| 745 | 
            -
                        nn.Linear(model_channels, time_embed_dim),
         | 
| 746 | 
            -
                        nn.SiLU(),
         | 
| 747 | 
            -
                        nn.Linear(time_embed_dim, time_embed_dim),
         | 
| 748 | 
            -
                    )
         | 
| 749 | 
            -
             | 
| 750 | 
            -
                    if camera_dim is not None:
         | 
| 751 | 
            -
                        time_embed_dim = model_channels * 4
         | 
| 752 | 
            -
                        self.camera_embed = nn.Sequential(
         | 
| 753 | 
            -
                            nn.Linear(camera_dim, time_embed_dim),
         | 
| 754 | 
            -
                            nn.SiLU(),
         | 
| 755 | 
            -
                            nn.Linear(time_embed_dim, time_embed_dim),
         | 
| 756 | 
            -
                        )
         | 
| 757 | 
            -
             | 
| 758 | 
            -
                    if self.num_classes is not None:
         | 
| 759 | 
            -
                        if isinstance(self.num_classes, int):
         | 
| 760 | 
            -
                            self.label_emb = nn.Embedding(self.num_classes, time_embed_dim)
         | 
| 761 | 
            -
                        elif self.num_classes == "continuous":
         | 
| 762 | 
            -
                            # print("setting up linear c_adm embedding layer")
         | 
| 763 | 
            -
                            self.label_emb = nn.Linear(1, time_embed_dim)
         | 
| 764 | 
            -
                        elif self.num_classes == "sequential":
         | 
| 765 | 
            -
                            assert adm_in_channels is not None
         | 
| 766 | 
            -
                            self.label_emb = nn.Sequential(
         | 
| 767 | 
            -
                                nn.Sequential(
         | 
| 768 | 
            -
                                    nn.Linear(adm_in_channels, time_embed_dim),
         | 
| 769 | 
            -
                                    nn.SiLU(),
         | 
| 770 | 
            -
                                    nn.Linear(time_embed_dim, time_embed_dim),
         | 
| 771 | 
            -
                                )
         | 
| 772 | 
            -
                            )
         | 
| 773 | 
            -
                        else:
         | 
| 774 | 
            -
                            raise ValueError()
         | 
| 775 | 
            -
             | 
| 776 | 
            -
                    self.input_blocks = nn.ModuleList(
         | 
| 777 | 
            -
                        [
         | 
| 778 | 
            -
                            CondSequential(
         | 
| 779 | 
            -
                                conv_nd(dims, in_channels, model_channels, 3, padding=1)
         | 
| 780 | 
            -
                            )
         | 
| 781 | 
            -
                        ]
         | 
| 782 | 
            -
                    )
         | 
| 783 | 
            -
                    self._feature_size = model_channels
         | 
| 784 | 
            -
                    input_block_chans = [model_channels]
         | 
| 785 | 
            -
                    ch = model_channels
         | 
| 786 | 
            -
                    ds = 1
         | 
| 787 | 
            -
                    for level, mult in enumerate(channel_mult):
         | 
| 788 | 
            -
                        for nr in range(self.num_res_blocks[level]):
         | 
| 789 | 
            -
                            layers: List[Any] = [
         | 
| 790 | 
            -
                                ResBlock(
         | 
| 791 | 
            -
                                    ch,
         | 
| 792 | 
            -
                                    time_embed_dim,
         | 
| 793 | 
            -
                                    dropout,
         | 
| 794 | 
            -
                                    out_channels=mult * model_channels,
         | 
| 795 | 
            -
                                    dims=dims,
         | 
| 796 | 
            -
                                    use_scale_shift_norm=use_scale_shift_norm,
         | 
| 797 | 
            -
                                )
         | 
| 798 | 
            -
                            ]
         | 
| 799 | 
            -
                            ch = mult * model_channels
         | 
| 800 | 
            -
                            if ds in attention_resolutions:
         | 
| 801 | 
            -
                                if num_head_channels == -1:
         | 
| 802 | 
            -
                                    dim_head = ch // num_heads
         | 
| 803 | 
            -
                                else:
         | 
| 804 | 
            -
                                    num_heads = ch // num_head_channels
         | 
| 805 | 
            -
                                    dim_head = num_head_channels
         | 
| 806 | 
            -
             | 
| 807 | 
            -
                                if num_attention_blocks is None or nr < num_attention_blocks[level]:
         | 
| 808 | 
            -
                                    layers.append(
         | 
| 809 | 
            -
                                        SpatialTransformer3D(
         | 
| 810 | 
            -
                                            ch,
         | 
| 811 | 
            -
                                            num_heads,
         | 
| 812 | 
            -
                                            dim_head,
         | 
| 813 | 
            -
                                            context_dim=context_dim,
         | 
| 814 | 
            -
                                            depth=transformer_depth,
         | 
| 815 | 
            -
                                            ip_dim=self.ip_dim,
         | 
| 816 | 
            -
                                            ip_weight=self.ip_weight,
         | 
| 817 | 
            -
                                        )
         | 
| 818 | 
            -
                                    )
         | 
| 819 | 
            -
                            self.input_blocks.append(CondSequential(*layers))
         | 
| 820 | 
            -
                            self._feature_size += ch
         | 
| 821 | 
            -
                            input_block_chans.append(ch)
         | 
| 822 | 
            -
                        if level != len(channel_mult) - 1:
         | 
| 823 | 
            -
                            out_ch = ch
         | 
| 824 | 
            -
                            self.input_blocks.append(
         | 
| 825 | 
            -
                                CondSequential(
         | 
| 826 | 
            -
                                    ResBlock(
         | 
| 827 | 
            -
                                        ch,
         | 
| 828 | 
            -
                                        time_embed_dim,
         | 
| 829 | 
            -
                                        dropout,
         | 
| 830 | 
            -
                                        out_channels=out_ch,
         | 
| 831 | 
            -
                                        dims=dims,
         | 
| 832 | 
            -
                                        use_scale_shift_norm=use_scale_shift_norm,
         | 
| 833 | 
            -
                                        down=True,
         | 
| 834 | 
            -
                                    )
         | 
| 835 | 
            -
                                    if resblock_updown
         | 
| 836 | 
            -
                                    else Downsample(
         | 
| 837 | 
            -
                                        ch, conv_resample, dims=dims, out_channels=out_ch
         | 
| 838 | 
            -
                                    )
         | 
| 839 | 
            -
                                )
         | 
| 840 | 
            -
                            )
         | 
| 841 | 
            -
                            ch = out_ch
         | 
| 842 | 
            -
                            input_block_chans.append(ch)
         | 
| 843 | 
            -
                            ds *= 2
         | 
| 844 | 
            -
                            self._feature_size += ch
         | 
| 845 | 
            -
             | 
| 846 | 
            -
                    if num_head_channels == -1:
         | 
| 847 | 
            -
                        dim_head = ch // num_heads
         | 
| 848 | 
            -
                    else:
         | 
| 849 | 
            -
                        num_heads = ch // num_head_channels
         | 
| 850 | 
            -
                        dim_head = num_head_channels
         | 
| 851 | 
            -
                    
         | 
| 852 | 
            -
                    self.middle_block = CondSequential(
         | 
| 853 | 
            -
                        ResBlock(
         | 
| 854 | 
            -
                            ch,
         | 
| 855 | 
            -
                            time_embed_dim,
         | 
| 856 | 
            -
                            dropout,
         | 
| 857 | 
            -
                            dims=dims,
         | 
| 858 | 
            -
                            use_scale_shift_norm=use_scale_shift_norm,
         | 
| 859 | 
            -
                        ),
         | 
| 860 | 
            -
                        SpatialTransformer3D(
         | 
| 861 | 
            -
                            ch,
         | 
| 862 | 
            -
                            num_heads,
         | 
| 863 | 
            -
                            dim_head,
         | 
| 864 | 
            -
                            context_dim=context_dim,
         | 
| 865 | 
            -
                            depth=transformer_depth,
         | 
| 866 | 
            -
                            ip_dim=self.ip_dim,
         | 
| 867 | 
            -
                            ip_weight=self.ip_weight,
         | 
| 868 | 
            -
                        ), 
         | 
| 869 | 
            -
                        ResBlock(
         | 
| 870 | 
            -
                            ch,
         | 
| 871 | 
            -
                            time_embed_dim,
         | 
| 872 | 
            -
                            dropout,
         | 
| 873 | 
            -
                            dims=dims,
         | 
| 874 | 
            -
                            use_scale_shift_norm=use_scale_shift_norm,
         | 
| 875 | 
            -
                        ),
         | 
| 876 | 
            -
                    )
         | 
| 877 | 
            -
                    self._feature_size += ch
         | 
| 878 | 
            -
             | 
| 879 | 
            -
                    self.output_blocks = nn.ModuleList([])
         | 
| 880 | 
            -
                    for level, mult in list(enumerate(channel_mult))[::-1]:
         | 
| 881 | 
            -
                        for i in range(self.num_res_blocks[level] + 1):
         | 
| 882 | 
            -
                            ich = input_block_chans.pop()
         | 
| 883 | 
            -
                            layers = [
         | 
| 884 | 
            -
                                ResBlock(
         | 
| 885 | 
            -
                                    ch + ich,
         | 
| 886 | 
            -
                                    time_embed_dim,
         | 
| 887 | 
            -
                                    dropout,
         | 
| 888 | 
            -
                                    out_channels=model_channels * mult,
         | 
| 889 | 
            -
                                    dims=dims,
         | 
| 890 | 
            -
                                    use_scale_shift_norm=use_scale_shift_norm,
         | 
| 891 | 
            -
                                )
         | 
| 892 | 
            -
                            ]
         | 
| 893 | 
            -
                            ch = model_channels * mult
         | 
| 894 | 
            -
                            if ds in attention_resolutions:
         | 
| 895 | 
            -
                                if num_head_channels == -1:
         | 
| 896 | 
            -
                                    dim_head = ch // num_heads
         | 
| 897 | 
            -
                                else:
         | 
| 898 | 
            -
                                    num_heads = ch // num_head_channels
         | 
| 899 | 
            -
                                    dim_head = num_head_channels
         | 
| 900 | 
            -
             | 
| 901 | 
            -
                                if num_attention_blocks is None or i < num_attention_blocks[level]:
         | 
| 902 | 
            -
                                    layers.append(
         | 
| 903 | 
            -
                                        SpatialTransformer3D(
         | 
| 904 | 
            -
                                            ch,
         | 
| 905 | 
            -
                                            num_heads,
         | 
| 906 | 
            -
                                            dim_head,
         | 
| 907 | 
            -
                                            context_dim=context_dim,
         | 
| 908 | 
            -
                                            depth=transformer_depth,
         | 
| 909 | 
            -
                                            ip_dim=self.ip_dim,
         | 
| 910 | 
            -
                                            ip_weight=self.ip_weight,
         | 
| 911 | 
            -
                                        )
         | 
| 912 | 
            -
                                    )
         | 
| 913 | 
            -
                            if level and i == self.num_res_blocks[level]:
         | 
| 914 | 
            -
                                out_ch = ch
         | 
| 915 | 
            -
                                layers.append(
         | 
| 916 | 
            -
                                    ResBlock(
         | 
| 917 | 
            -
                                        ch,
         | 
| 918 | 
            -
                                        time_embed_dim,
         | 
| 919 | 
            -
                                        dropout,
         | 
| 920 | 
            -
                                        out_channels=out_ch,
         | 
| 921 | 
            -
                                        dims=dims,
         | 
| 922 | 
            -
                                        use_scale_shift_norm=use_scale_shift_norm,
         | 
| 923 | 
            -
                                        up=True,
         | 
| 924 | 
            -
                                    )
         | 
| 925 | 
            -
                                    if resblock_updown
         | 
| 926 | 
            -
                                    else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
         | 
| 927 | 
            -
                                )
         | 
| 928 | 
            -
                                ds //= 2
         | 
| 929 | 
            -
                            self.output_blocks.append(CondSequential(*layers))
         | 
| 930 | 
            -
                            self._feature_size += ch
         | 
| 931 | 
            -
             | 
| 932 | 
            -
                    self.out = nn.Sequential(
         | 
| 933 | 
            -
                        nn.GroupNorm(32, ch),
         | 
| 934 | 
            -
                        nn.SiLU(),
         | 
| 935 | 
            -
                        zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
         | 
| 936 | 
            -
                    )
         | 
| 937 | 
            -
                    if self.predict_codebook_ids:
         | 
| 938 | 
            -
                        self.id_predictor = nn.Sequential(
         | 
| 939 | 
            -
                            nn.GroupNorm(32, ch),
         | 
| 940 | 
            -
                            conv_nd(dims, model_channels, n_embed, 1),
         | 
| 941 | 
            -
                            # nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
         | 
| 942 | 
            -
                        )
         | 
| 943 | 
            -
             | 
| 944 | 
            -
                def forward(
         | 
| 945 | 
            -
                    self,
         | 
| 946 | 
            -
                    x,
         | 
| 947 | 
            -
                    timesteps=None,
         | 
| 948 | 
            -
                    context=None,
         | 
| 949 | 
            -
                    y=None,
         | 
| 950 | 
            -
                    camera=None,
         | 
| 951 | 
            -
                    num_frames=1,
         | 
| 952 | 
            -
                    ip=None,
         | 
| 953 | 
            -
                    ip_img=None,
         | 
| 954 | 
            -
                    **kwargs,
         | 
| 955 | 
            -
                ):
         | 
| 956 | 
            -
                    """
         | 
| 957 | 
            -
                    Apply the model to an input batch.
         | 
| 958 | 
            -
                    :param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views).
         | 
| 959 | 
            -
                    :param timesteps: a 1-D batch of timesteps.
         | 
| 960 | 
            -
                    :param context: conditioning plugged in via crossattn
         | 
| 961 | 
            -
                    :param y: an [N] Tensor of labels, if class-conditional.
         | 
| 962 | 
            -
                    :param num_frames: a integer indicating number of frames for tensor reshaping.
         | 
| 963 | 
            -
                    :return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views).
         | 
| 964 | 
            -
                    """
         | 
| 965 | 
            -
                    assert (
         | 
| 966 | 
            -
                        x.shape[0] % num_frames == 0
         | 
| 967 | 
            -
                    ), "input batch size must be dividable by num_frames!"
         | 
| 968 | 
            -
                    assert (y is not None) == (
         | 
| 969 | 
            -
                        self.num_classes is not None
         | 
| 970 | 
            -
                    ), "must specify y if and only if the model is class-conditional"
         | 
| 971 | 
            -
             | 
| 972 | 
            -
                    hs = []
         | 
| 973 | 
            -
             | 
| 974 | 
            -
                    t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
         | 
| 975 | 
            -
             | 
| 976 | 
            -
                    emb = self.time_embed(t_emb)
         | 
| 977 | 
            -
             | 
| 978 | 
            -
                    if self.num_classes is not None:
         | 
| 979 | 
            -
                        assert y is not None
         | 
| 980 | 
            -
                        assert y.shape[0] == x.shape[0]
         | 
| 981 | 
            -
                        emb = emb + self.label_emb(y)
         | 
| 982 | 
            -
             | 
| 983 | 
            -
                    # Add camera embeddings
         | 
| 984 | 
            -
                    if camera is not None:
         | 
| 985 | 
            -
                        emb = emb + self.camera_embed(camera)
         | 
| 986 | 
            -
                    
         | 
| 987 | 
            -
                    # imagedream variant
         | 
| 988 | 
            -
                    if self.ip_dim > 0:
         | 
| 989 | 
            -
                        x[(num_frames - 1) :: num_frames, :, :, :] = ip_img # place at [4, 9]
         | 
| 990 | 
            -
                        ip_emb = self.image_embed(ip)
         | 
| 991 | 
            -
                        context = torch.cat((context, ip_emb), 1)
         | 
| 992 | 
            -
             | 
| 993 | 
            -
                    h = x
         | 
| 994 | 
            -
                    for module in self.input_blocks:
         | 
| 995 | 
            -
                        h = module(h, emb, context, num_frames=num_frames)
         | 
| 996 | 
            -
                        hs.append(h)
         | 
| 997 | 
            -
                    h = self.middle_block(h, emb, context, num_frames=num_frames)
         | 
| 998 | 
            -
                    for module in self.output_blocks:
         | 
| 999 | 
            -
                        h = torch.cat([h, hs.pop()], dim=1)
         | 
| 1000 | 
            -
                        h = module(h, emb, context, num_frames=num_frames)
         | 
| 1001 | 
            -
                    h = h.type(x.dtype)
         | 
| 1002 | 
            -
                    if self.predict_codebook_ids:
         | 
| 1003 | 
            -
                        return self.id_predictor(h)
         | 
| 1004 | 
            -
                    else:
         | 
| 1005 | 
            -
                        return self.out(h)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        pipeline.py
    CHANGED
    
    | @@ -2,8 +2,13 @@ import torch | |
| 2 | 
             
            import torch.nn.functional as F
         | 
| 3 | 
             
            import inspect
         | 
| 4 | 
             
            import numpy as np
         | 
| 5 | 
            -
            from typing import Callable, List, Optional, Union
         | 
| 6 | 
            -
            from transformers import  | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 7 | 
             
            from diffusers import AutoencoderKL, DiffusionPipeline
         | 
| 8 | 
             
            from diffusers.utils import (
         | 
| 9 | 
             
                deprecate,
         | 
| @@ -15,7 +20,1017 @@ from diffusers.configuration_utils import FrozenDict | |
| 15 | 
             
            from diffusers.schedulers import DDIMScheduler
         | 
| 16 | 
             
            from diffusers.utils.torch_utils import randn_tensor
         | 
| 17 |  | 
| 18 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 19 |  | 
| 20 | 
             
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 21 |  | 
| @@ -404,26 +1419,30 @@ class MVDreamPipeline(DiffusionPipeline): | |
| 404 |  | 
| 405 | 
             
                    if image.dtype == np.float32:
         | 
| 406 | 
             
                        image = (image * 255).astype(np.uint8)
         | 
| 407 | 
            -
             | 
| 408 | 
             
                    image = self.feature_extractor(image, return_tensors="pt").pixel_values
         | 
| 409 | 
             
                    image = image.to(device=device, dtype=dtype)
         | 
| 410 | 
            -
             | 
| 411 | 
            -
                    image_embeds = self.image_encoder( | 
|  | |
|  | |
| 412 | 
             
                    image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
         | 
| 413 |  | 
| 414 | 
             
                    return torch.zeros_like(image_embeds), image_embeds
         | 
| 415 |  | 
| 416 | 
             
                def encode_image_latents(self, image, device, num_images_per_prompt):
         | 
| 417 | 
            -
             | 
| 418 | 
             
                    dtype = next(self.image_encoder.parameters()).dtype
         | 
| 419 |  | 
| 420 | 
            -
                    image =  | 
|  | |
|  | |
| 421 | 
             
                    image = 2 * image - 1
         | 
| 422 | 
            -
                    image = F.interpolate(image, (256, 256), mode= | 
| 423 | 
             
                    image = image.to(dtype=dtype)
         | 
| 424 |  | 
| 425 | 
             
                    posterior = self.vae.encode(image).latent_dist
         | 
| 426 | 
            -
                    latents = posterior.sample() * self.vae.config.scaling_factor | 
| 427 | 
             
                    latents = latents.repeat_interleave(num_images_per_prompt, dim=0)
         | 
| 428 |  | 
| 429 | 
             
                    return torch.zeros_like(latents), latents
         | 
| @@ -442,7 +1461,7 @@ class MVDreamPipeline(DiffusionPipeline): | |
| 442 | 
             
                    num_images_per_prompt: int = 1,
         | 
| 443 | 
             
                    eta: float = 0.0,
         | 
| 444 | 
             
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         | 
| 445 | 
            -
                    output_type: Optional[str] = "numpy", | 
| 446 | 
             
                    callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
         | 
| 447 | 
             
                    callback_steps: int = 1,
         | 
| 448 | 
             
                    num_frames: int = 4,
         | 
| @@ -465,9 +1484,13 @@ class MVDreamPipeline(DiffusionPipeline): | |
| 465 | 
             
                    if image is not None:
         | 
| 466 | 
             
                        assert isinstance(image, np.ndarray) and image.dtype == np.float32
         | 
| 467 | 
             
                        self.image_encoder = self.image_encoder.to(device=device)
         | 
| 468 | 
            -
                        image_embeds_neg, image_embeds_pos = self.encode_image( | 
| 469 | 
            -
             | 
| 470 | 
            -
                        
         | 
|  | |
|  | |
|  | |
|  | |
| 471 | 
             
                    _prompt_embeds = self._encode_prompt(
         | 
| 472 | 
             
                        prompt=prompt,
         | 
| 473 | 
             
                        device=device,
         | 
| @@ -491,7 +1514,9 @@ class MVDreamPipeline(DiffusionPipeline): | |
| 491 | 
             
                    )
         | 
| 492 |  | 
| 493 | 
             
                    # Get camera
         | 
| 494 | 
            -
                    camera = get_camera( | 
|  | |
|  | |
| 495 | 
             
                    camera = camera.repeat_interleave(num_images_per_prompt, dim=0)
         | 
| 496 |  | 
| 497 | 
             
                    # Prepare extra step kwargs.
         | 
| @@ -504,20 +1529,34 @@ class MVDreamPipeline(DiffusionPipeline): | |
| 504 | 
             
                            # expand the latents if we are doing classifier free guidance
         | 
| 505 | 
             
                            multiplier = 2 if do_classifier_free_guidance else 1
         | 
| 506 | 
             
                            latent_model_input = torch.cat([latents] * multiplier)
         | 
| 507 | 
            -
                            latent_model_input = self.scheduler.scale_model_input( | 
|  | |
|  | |
| 508 |  | 
| 509 | 
             
                            unet_inputs = {
         | 
| 510 | 
            -
                                 | 
| 511 | 
            -
                                 | 
| 512 | 
            -
             | 
| 513 | 
            -
             | 
| 514 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 515 | 
             
                            }
         | 
| 516 |  | 
| 517 | 
             
                            if image is not None:
         | 
| 518 | 
            -
                                unet_inputs[ | 
| 519 | 
            -
             | 
| 520 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 521 | 
             
                            # predict the noise residual
         | 
| 522 | 
             
                            noise_pred = self.unet.forward(**unet_inputs)
         | 
| 523 |  | 
| @@ -547,7 +1586,7 @@ class MVDreamPipeline(DiffusionPipeline): | |
| 547 | 
             
                    elif output_type == "pil":
         | 
| 548 | 
             
                        image = self.decode_latents(latents)
         | 
| 549 | 
             
                        image = self.numpy_to_pil(image)
         | 
| 550 | 
            -
                    else: | 
| 551 | 
             
                        image = self.decode_latents(latents)
         | 
| 552 |  | 
| 553 | 
             
                    # Offload last model to CPU
         | 
|  | |
| 2 | 
             
            import torch.nn.functional as F
         | 
| 3 | 
             
            import inspect
         | 
| 4 | 
             
            import numpy as np
         | 
| 5 | 
            +
            from typing import Callable, List, Optional, Union, Any
         | 
| 6 | 
            +
            from transformers import (
         | 
| 7 | 
            +
                CLIPTextModel,
         | 
| 8 | 
            +
                CLIPTokenizer,
         | 
| 9 | 
            +
                CLIPVisionModel,
         | 
| 10 | 
            +
                CLIPImageProcessor,
         | 
| 11 | 
            +
            )
         | 
| 12 | 
             
            from diffusers import AutoencoderKL, DiffusionPipeline
         | 
| 13 | 
             
            from diffusers.utils import (
         | 
| 14 | 
             
                deprecate,
         | 
|  | |
| 20 | 
             
            from diffusers.schedulers import DDIMScheduler
         | 
| 21 | 
             
            from diffusers.utils.torch_utils import randn_tensor
         | 
| 22 |  | 
| 23 | 
            +
            import math
         | 
| 24 | 
            +
            from inspect import isfunction
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            import torch.nn as nn
         | 
| 27 | 
            +
            from einops import rearrange, repeat
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            from diffusers.configuration_utils import ConfigMixin
         | 
| 30 | 
            +
            from diffusers.models.modeling_utils import ModelMixin
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            # require xformers!
         | 
| 33 | 
            +
            import xformers
         | 
| 34 | 
            +
            import xformers.ops
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            from kiui.cam import orbit_camera
         | 
| 37 | 
            +
             | 
| 38 | 
            +
             | 
| 39 | 
            +
            def get_camera(
         | 
| 40 | 
            +
                num_frames,
         | 
| 41 | 
            +
                elevation=15,
         | 
| 42 | 
            +
                azimuth_start=0,
         | 
| 43 | 
            +
                azimuth_span=360,
         | 
| 44 | 
            +
                blender_coord=True,
         | 
| 45 | 
            +
                extra_view=False,
         | 
| 46 | 
            +
            ):
         | 
| 47 | 
            +
                angle_gap = azimuth_span / num_frames
         | 
| 48 | 
            +
                cameras = []
         | 
| 49 | 
            +
                for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap):
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                    pose = orbit_camera(
         | 
| 52 | 
            +
                        -elevation, azimuth, radius=1
         | 
| 53 | 
            +
                    )  # kiui's elevation is negated, [4, 4]
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                    # opengl to blender
         | 
| 56 | 
            +
                    if blender_coord:
         | 
| 57 | 
            +
                        pose[2] *= -1
         | 
| 58 | 
            +
                        pose[[1, 2]] = pose[[2, 1]]
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                    cameras.append(pose.flatten())
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                if extra_view:
         | 
| 63 | 
            +
                    cameras.append(np.zeros_like(cameras[0]))
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                return torch.from_numpy(np.stack(cameras, axis=0)).float()  # [num_frames, 16]
         | 
| 66 | 
            +
             | 
| 67 | 
            +
             | 
| 68 | 
            +
            def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
         | 
| 69 | 
            +
                """
         | 
| 70 | 
            +
                Create sinusoidal timestep embeddings.
         | 
| 71 | 
            +
                :param timesteps: a 1-D Tensor of N indices, one per batch element.
         | 
| 72 | 
            +
                                  These may be fractional.
         | 
| 73 | 
            +
                :param dim: the dimension of the output.
         | 
| 74 | 
            +
                :param max_period: controls the minimum frequency of the embeddings.
         | 
| 75 | 
            +
                :return: an [N x dim] Tensor of positional embeddings.
         | 
| 76 | 
            +
                """
         | 
| 77 | 
            +
                if not repeat_only:
         | 
| 78 | 
            +
                    half = dim // 2
         | 
| 79 | 
            +
                    freqs = torch.exp(
         | 
| 80 | 
            +
                        -math.log(max_period)
         | 
| 81 | 
            +
                        * torch.arange(start=0, end=half, dtype=torch.float32)
         | 
| 82 | 
            +
                        / half
         | 
| 83 | 
            +
                    ).to(device=timesteps.device)
         | 
| 84 | 
            +
                    args = timesteps[:, None] * freqs[None]
         | 
| 85 | 
            +
                    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
         | 
| 86 | 
            +
                    if dim % 2:
         | 
| 87 | 
            +
                        embedding = torch.cat(
         | 
| 88 | 
            +
                            [embedding, torch.zeros_like(embedding[:, :1])], dim=-1
         | 
| 89 | 
            +
                        )
         | 
| 90 | 
            +
                else:
         | 
| 91 | 
            +
                    embedding = repeat(timesteps, "b -> b d", d=dim)
         | 
| 92 | 
            +
                # import pdb; pdb.set_trace()
         | 
| 93 | 
            +
                return embedding
         | 
| 94 | 
            +
             | 
| 95 | 
            +
             | 
| 96 | 
            +
            def zero_module(module):
         | 
| 97 | 
            +
                """
         | 
| 98 | 
            +
                Zero out the parameters of a module and return it.
         | 
| 99 | 
            +
                """
         | 
| 100 | 
            +
                for p in module.parameters():
         | 
| 101 | 
            +
                    p.detach().zero_()
         | 
| 102 | 
            +
                return module
         | 
| 103 | 
            +
             | 
| 104 | 
            +
             | 
| 105 | 
            +
            def conv_nd(dims, *args, **kwargs):
         | 
| 106 | 
            +
                """
         | 
| 107 | 
            +
                Create a 1D, 2D, or 3D convolution module.
         | 
| 108 | 
            +
                """
         | 
| 109 | 
            +
                if dims == 1:
         | 
| 110 | 
            +
                    return nn.Conv1d(*args, **kwargs)
         | 
| 111 | 
            +
                elif dims == 2:
         | 
| 112 | 
            +
                    return nn.Conv2d(*args, **kwargs)
         | 
| 113 | 
            +
                elif dims == 3:
         | 
| 114 | 
            +
                    return nn.Conv3d(*args, **kwargs)
         | 
| 115 | 
            +
                raise ValueError(f"unsupported dimensions: {dims}")
         | 
| 116 | 
            +
             | 
| 117 | 
            +
             | 
| 118 | 
            +
            def avg_pool_nd(dims, *args, **kwargs):
         | 
| 119 | 
            +
                """
         | 
| 120 | 
            +
                Create a 1D, 2D, or 3D average pooling module.
         | 
| 121 | 
            +
                """
         | 
| 122 | 
            +
                if dims == 1:
         | 
| 123 | 
            +
                    return nn.AvgPool1d(*args, **kwargs)
         | 
| 124 | 
            +
                elif dims == 2:
         | 
| 125 | 
            +
                    return nn.AvgPool2d(*args, **kwargs)
         | 
| 126 | 
            +
                elif dims == 3:
         | 
| 127 | 
            +
                    return nn.AvgPool3d(*args, **kwargs)
         | 
| 128 | 
            +
                raise ValueError(f"unsupported dimensions: {dims}")
         | 
| 129 | 
            +
             | 
| 130 | 
            +
             | 
| 131 | 
            +
            def default(val, d):
         | 
| 132 | 
            +
                if val is not None:
         | 
| 133 | 
            +
                    return val
         | 
| 134 | 
            +
                return d() if isfunction(d) else d
         | 
| 135 | 
            +
             | 
| 136 | 
            +
             | 
| 137 | 
            +
            class GEGLU(nn.Module):
         | 
| 138 | 
            +
                def __init__(self, dim_in, dim_out):
         | 
| 139 | 
            +
                    super().__init__()
         | 
| 140 | 
            +
                    self.proj = nn.Linear(dim_in, dim_out * 2)
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                def forward(self, x):
         | 
| 143 | 
            +
                    x, gate = self.proj(x).chunk(2, dim=-1)
         | 
| 144 | 
            +
                    return x * F.gelu(gate)
         | 
| 145 | 
            +
             | 
| 146 | 
            +
             | 
| 147 | 
            +
            class FeedForward(nn.Module):
         | 
| 148 | 
            +
                def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
         | 
| 149 | 
            +
                    super().__init__()
         | 
| 150 | 
            +
                    inner_dim = int(dim * mult)
         | 
| 151 | 
            +
                    dim_out = default(dim_out, dim)
         | 
| 152 | 
            +
                    project_in = (
         | 
| 153 | 
            +
                        nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
         | 
| 154 | 
            +
                        if not glu
         | 
| 155 | 
            +
                        else GEGLU(dim, inner_dim)
         | 
| 156 | 
            +
                    )
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                    self.net = nn.Sequential(
         | 
| 159 | 
            +
                        project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
         | 
| 160 | 
            +
                    )
         | 
| 161 | 
            +
             | 
| 162 | 
            +
                def forward(self, x):
         | 
| 163 | 
            +
                    return self.net(x)
         | 
| 164 | 
            +
             | 
| 165 | 
            +
             | 
| 166 | 
            +
            class MemoryEfficientCrossAttention(nn.Module):
         | 
| 167 | 
            +
                # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
         | 
| 168 | 
            +
                def __init__(
         | 
| 169 | 
            +
                    self,
         | 
| 170 | 
            +
                    query_dim,
         | 
| 171 | 
            +
                    context_dim=None,
         | 
| 172 | 
            +
                    heads=8,
         | 
| 173 | 
            +
                    dim_head=64,
         | 
| 174 | 
            +
                    dropout=0.0,
         | 
| 175 | 
            +
                    ip_dim=0,
         | 
| 176 | 
            +
                    ip_weight=1,
         | 
| 177 | 
            +
                ):
         | 
| 178 | 
            +
                    super().__init__()
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                    inner_dim = dim_head * heads
         | 
| 181 | 
            +
                    context_dim = default(context_dim, query_dim)
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                    self.heads = heads
         | 
| 184 | 
            +
                    self.dim_head = dim_head
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                    self.ip_dim = ip_dim
         | 
| 187 | 
            +
                    self.ip_weight = ip_weight
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                    if self.ip_dim > 0:
         | 
| 190 | 
            +
                        self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 191 | 
            +
                        self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                    self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
         | 
| 194 | 
            +
                    self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 195 | 
            +
                    self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                    self.to_out = nn.Sequential(
         | 
| 198 | 
            +
                        nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
         | 
| 199 | 
            +
                    )
         | 
| 200 | 
            +
                    self.attention_op: Optional[Any] = None
         | 
| 201 | 
            +
             | 
| 202 | 
            +
                def forward(self, x, context=None):
         | 
| 203 | 
            +
                    q = self.to_q(x)
         | 
| 204 | 
            +
                    context = default(context, x)
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                    if self.ip_dim > 0:
         | 
| 207 | 
            +
                        # context: [B, 77 + 16(ip), 1024]
         | 
| 208 | 
            +
                        token_len = context.shape[1]
         | 
| 209 | 
            +
                        context_ip = context[:, -self.ip_dim :, :]
         | 
| 210 | 
            +
                        k_ip = self.to_k_ip(context_ip)
         | 
| 211 | 
            +
                        v_ip = self.to_v_ip(context_ip)
         | 
| 212 | 
            +
                        context = context[:, : (token_len - self.ip_dim), :]
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                    k = self.to_k(context)
         | 
| 215 | 
            +
                    v = self.to_v(context)
         | 
| 216 | 
            +
             | 
| 217 | 
            +
                    b, _, _ = q.shape
         | 
| 218 | 
            +
                    q, k, v = map(
         | 
| 219 | 
            +
                        lambda t: t.unsqueeze(3)
         | 
| 220 | 
            +
                        .reshape(b, t.shape[1], self.heads, self.dim_head)
         | 
| 221 | 
            +
                        .permute(0, 2, 1, 3)
         | 
| 222 | 
            +
                        .reshape(b * self.heads, t.shape[1], self.dim_head)
         | 
| 223 | 
            +
                        .contiguous(),
         | 
| 224 | 
            +
                        (q, k, v),
         | 
| 225 | 
            +
                    )
         | 
| 226 | 
            +
             | 
| 227 | 
            +
                    # actually compute the attention, what we cannot get enough of
         | 
| 228 | 
            +
                    out = xformers.ops.memory_efficient_attention(
         | 
| 229 | 
            +
                        q, k, v, attn_bias=None, op=self.attention_op
         | 
| 230 | 
            +
                    )
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                    if self.ip_dim > 0:
         | 
| 233 | 
            +
                        k_ip, v_ip = map(
         | 
| 234 | 
            +
                            lambda t: t.unsqueeze(3)
         | 
| 235 | 
            +
                            .reshape(b, t.shape[1], self.heads, self.dim_head)
         | 
| 236 | 
            +
                            .permute(0, 2, 1, 3)
         | 
| 237 | 
            +
                            .reshape(b * self.heads, t.shape[1], self.dim_head)
         | 
| 238 | 
            +
                            .contiguous(),
         | 
| 239 | 
            +
                            (k_ip, v_ip),
         | 
| 240 | 
            +
                        )
         | 
| 241 | 
            +
                        # actually compute the attention, what we cannot get enough of
         | 
| 242 | 
            +
                        out_ip = xformers.ops.memory_efficient_attention(
         | 
| 243 | 
            +
                            q, k_ip, v_ip, attn_bias=None, op=self.attention_op
         | 
| 244 | 
            +
                        )
         | 
| 245 | 
            +
                        out = out + self.ip_weight * out_ip
         | 
| 246 | 
            +
             | 
| 247 | 
            +
                    out = (
         | 
| 248 | 
            +
                        out.unsqueeze(0)
         | 
| 249 | 
            +
                        .reshape(b, self.heads, out.shape[1], self.dim_head)
         | 
| 250 | 
            +
                        .permute(0, 2, 1, 3)
         | 
| 251 | 
            +
                        .reshape(b, out.shape[1], self.heads * self.dim_head)
         | 
| 252 | 
            +
                    )
         | 
| 253 | 
            +
                    return self.to_out(out)
         | 
| 254 | 
            +
             | 
| 255 | 
            +
             | 
| 256 | 
            +
            class BasicTransformerBlock3D(nn.Module):
         | 
| 257 | 
            +
             | 
| 258 | 
            +
                def __init__(
         | 
| 259 | 
            +
                    self,
         | 
| 260 | 
            +
                    dim,
         | 
| 261 | 
            +
                    n_heads,
         | 
| 262 | 
            +
                    d_head,
         | 
| 263 | 
            +
                    context_dim,
         | 
| 264 | 
            +
                    dropout=0.0,
         | 
| 265 | 
            +
                    gated_ff=True,
         | 
| 266 | 
            +
                    ip_dim=0,
         | 
| 267 | 
            +
                    ip_weight=1,
         | 
| 268 | 
            +
                ):
         | 
| 269 | 
            +
                    super().__init__()
         | 
| 270 | 
            +
             | 
| 271 | 
            +
                    self.attn1 = MemoryEfficientCrossAttention(
         | 
| 272 | 
            +
                        query_dim=dim,
         | 
| 273 | 
            +
                        context_dim=None,  # self-attention
         | 
| 274 | 
            +
                        heads=n_heads,
         | 
| 275 | 
            +
                        dim_head=d_head,
         | 
| 276 | 
            +
                        dropout=dropout,
         | 
| 277 | 
            +
                    )
         | 
| 278 | 
            +
                    self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
         | 
| 279 | 
            +
                    self.attn2 = MemoryEfficientCrossAttention(
         | 
| 280 | 
            +
                        query_dim=dim,
         | 
| 281 | 
            +
                        context_dim=context_dim,
         | 
| 282 | 
            +
                        heads=n_heads,
         | 
| 283 | 
            +
                        dim_head=d_head,
         | 
| 284 | 
            +
                        dropout=dropout,
         | 
| 285 | 
            +
                        # ip only applies to cross-attention
         | 
| 286 | 
            +
                        ip_dim=ip_dim,
         | 
| 287 | 
            +
                        ip_weight=ip_weight,
         | 
| 288 | 
            +
                    )
         | 
| 289 | 
            +
                    self.norm1 = nn.LayerNorm(dim)
         | 
| 290 | 
            +
                    self.norm2 = nn.LayerNorm(dim)
         | 
| 291 | 
            +
                    self.norm3 = nn.LayerNorm(dim)
         | 
| 292 | 
            +
             | 
| 293 | 
            +
                def forward(self, x, context=None, num_frames=1):
         | 
| 294 | 
            +
                    x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous()
         | 
| 295 | 
            +
                    x = self.attn1(self.norm1(x), context=None) + x
         | 
| 296 | 
            +
                    x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous()
         | 
| 297 | 
            +
                    x = self.attn2(self.norm2(x), context=context) + x
         | 
| 298 | 
            +
                    x = self.ff(self.norm3(x)) + x
         | 
| 299 | 
            +
                    return x
         | 
| 300 | 
            +
             | 
| 301 | 
            +
             | 
| 302 | 
            +
            class SpatialTransformer3D(nn.Module):
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                def __init__(
         | 
| 305 | 
            +
                    self,
         | 
| 306 | 
            +
                    in_channels,
         | 
| 307 | 
            +
                    n_heads,
         | 
| 308 | 
            +
                    d_head,
         | 
| 309 | 
            +
                    context_dim,  # cross attention input dim
         | 
| 310 | 
            +
                    depth=1,
         | 
| 311 | 
            +
                    dropout=0.0,
         | 
| 312 | 
            +
                    ip_dim=0,
         | 
| 313 | 
            +
                    ip_weight=1,
         | 
| 314 | 
            +
                ):
         | 
| 315 | 
            +
                    super().__init__()
         | 
| 316 | 
            +
             | 
| 317 | 
            +
                    if not isinstance(context_dim, list):
         | 
| 318 | 
            +
                        context_dim = [context_dim]
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                    self.in_channels = in_channels
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                    inner_dim = n_heads * d_head
         | 
| 323 | 
            +
                    self.norm = nn.GroupNorm(
         | 
| 324 | 
            +
                        num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
         | 
| 325 | 
            +
                    )
         | 
| 326 | 
            +
                    self.proj_in = nn.Linear(in_channels, inner_dim)
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                    self.transformer_blocks = nn.ModuleList(
         | 
| 329 | 
            +
                        [
         | 
| 330 | 
            +
                            BasicTransformerBlock3D(
         | 
| 331 | 
            +
                                inner_dim,
         | 
| 332 | 
            +
                                n_heads,
         | 
| 333 | 
            +
                                d_head,
         | 
| 334 | 
            +
                                context_dim=context_dim[d],
         | 
| 335 | 
            +
                                dropout=dropout,
         | 
| 336 | 
            +
                                ip_dim=ip_dim,
         | 
| 337 | 
            +
                                ip_weight=ip_weight,
         | 
| 338 | 
            +
                            )
         | 
| 339 | 
            +
                            for d in range(depth)
         | 
| 340 | 
            +
                        ]
         | 
| 341 | 
            +
                    )
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                    self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
         | 
| 344 | 
            +
             | 
| 345 | 
            +
                def forward(self, x, context=None, num_frames=1):
         | 
| 346 | 
            +
                    # note: if no context is given, cross-attention defaults to self-attention
         | 
| 347 | 
            +
                    if not isinstance(context, list):
         | 
| 348 | 
            +
                        context = [context]
         | 
| 349 | 
            +
                    b, c, h, w = x.shape
         | 
| 350 | 
            +
                    x_in = x
         | 
| 351 | 
            +
                    x = self.norm(x)
         | 
| 352 | 
            +
                    x = rearrange(x, "b c h w -> b (h w) c").contiguous()
         | 
| 353 | 
            +
                    x = self.proj_in(x)
         | 
| 354 | 
            +
                    for i, block in enumerate(self.transformer_blocks):
         | 
| 355 | 
            +
                        x = block(x, context=context[i], num_frames=num_frames)
         | 
| 356 | 
            +
                    x = self.proj_out(x)
         | 
| 357 | 
            +
                    x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
         | 
| 358 | 
            +
             | 
| 359 | 
            +
                    return x + x_in
         | 
| 360 | 
            +
             | 
| 361 | 
            +
             | 
| 362 | 
            +
            class PerceiverAttention(nn.Module):
         | 
| 363 | 
            +
                def __init__(self, *, dim, dim_head=64, heads=8):
         | 
| 364 | 
            +
                    super().__init__()
         | 
| 365 | 
            +
                    self.scale = dim_head**-0.5
         | 
| 366 | 
            +
                    self.dim_head = dim_head
         | 
| 367 | 
            +
                    self.heads = heads
         | 
| 368 | 
            +
                    inner_dim = dim_head * heads
         | 
| 369 | 
            +
             | 
| 370 | 
            +
                    self.norm1 = nn.LayerNorm(dim)
         | 
| 371 | 
            +
                    self.norm2 = nn.LayerNorm(dim)
         | 
| 372 | 
            +
             | 
| 373 | 
            +
                    self.to_q = nn.Linear(dim, inner_dim, bias=False)
         | 
| 374 | 
            +
                    self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
         | 
| 375 | 
            +
                    self.to_out = nn.Linear(inner_dim, dim, bias=False)
         | 
| 376 | 
            +
             | 
| 377 | 
            +
                def forward(self, x, latents):
         | 
| 378 | 
            +
                    """
         | 
| 379 | 
            +
                    Args:
         | 
| 380 | 
            +
                        x (torch.Tensor): image features
         | 
| 381 | 
            +
                            shape (b, n1, D)
         | 
| 382 | 
            +
                        latent (torch.Tensor): latent features
         | 
| 383 | 
            +
                            shape (b, n2, D)
         | 
| 384 | 
            +
                    """
         | 
| 385 | 
            +
                    x = self.norm1(x)
         | 
| 386 | 
            +
                    latents = self.norm2(latents)
         | 
| 387 | 
            +
             | 
| 388 | 
            +
                    b, h, _ = latents.shape
         | 
| 389 | 
            +
             | 
| 390 | 
            +
                    q = self.to_q(latents)
         | 
| 391 | 
            +
                    kv_input = torch.cat((x, latents), dim=-2)
         | 
| 392 | 
            +
                    k, v = self.to_kv(kv_input).chunk(2, dim=-1)
         | 
| 393 | 
            +
             | 
| 394 | 
            +
                    q, k, v = map(
         | 
| 395 | 
            +
                        lambda t: t.reshape(b, t.shape[1], self.heads, -1)
         | 
| 396 | 
            +
                        .transpose(1, 2)
         | 
| 397 | 
            +
                        .reshape(b, self.heads, t.shape[1], -1)
         | 
| 398 | 
            +
                        .contiguous(),
         | 
| 399 | 
            +
                        (q, k, v),
         | 
| 400 | 
            +
                    )
         | 
| 401 | 
            +
             | 
| 402 | 
            +
                    # attention
         | 
| 403 | 
            +
                    scale = 1 / math.sqrt(math.sqrt(self.dim_head))
         | 
| 404 | 
            +
                    weight = (q * scale) @ (k * scale).transpose(
         | 
| 405 | 
            +
                        -2, -1
         | 
| 406 | 
            +
                    )  # More stable with f16 than dividing afterwards
         | 
| 407 | 
            +
                    weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
         | 
| 408 | 
            +
                    out = weight @ v
         | 
| 409 | 
            +
             | 
| 410 | 
            +
                    out = out.permute(0, 2, 1, 3).reshape(b, h, -1)
         | 
| 411 | 
            +
             | 
| 412 | 
            +
                    return self.to_out(out)
         | 
| 413 | 
            +
             | 
| 414 | 
            +
             | 
| 415 | 
            +
            class Resampler(nn.Module):
         | 
| 416 | 
            +
                def __init__(
         | 
| 417 | 
            +
                    self,
         | 
| 418 | 
            +
                    dim=1024,
         | 
| 419 | 
            +
                    depth=8,
         | 
| 420 | 
            +
                    dim_head=64,
         | 
| 421 | 
            +
                    heads=16,
         | 
| 422 | 
            +
                    num_queries=8,
         | 
| 423 | 
            +
                    embedding_dim=768,
         | 
| 424 | 
            +
                    output_dim=1024,
         | 
| 425 | 
            +
                    ff_mult=4,
         | 
| 426 | 
            +
                ):
         | 
| 427 | 
            +
                    super().__init__()
         | 
| 428 | 
            +
                    self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
         | 
| 429 | 
            +
                    self.proj_in = nn.Linear(embedding_dim, dim)
         | 
| 430 | 
            +
                    self.proj_out = nn.Linear(dim, output_dim)
         | 
| 431 | 
            +
                    self.norm_out = nn.LayerNorm(output_dim)
         | 
| 432 | 
            +
             | 
| 433 | 
            +
                    self.layers = nn.ModuleList([])
         | 
| 434 | 
            +
                    for _ in range(depth):
         | 
| 435 | 
            +
                        self.layers.append(
         | 
| 436 | 
            +
                            nn.ModuleList(
         | 
| 437 | 
            +
                                [
         | 
| 438 | 
            +
                                    PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
         | 
| 439 | 
            +
                                    nn.Sequential(
         | 
| 440 | 
            +
                                        nn.LayerNorm(dim),
         | 
| 441 | 
            +
                                        nn.Linear(dim, dim * ff_mult, bias=False),
         | 
| 442 | 
            +
                                        nn.GELU(),
         | 
| 443 | 
            +
                                        nn.Linear(dim * ff_mult, dim, bias=False),
         | 
| 444 | 
            +
                                    ),
         | 
| 445 | 
            +
                                ]
         | 
| 446 | 
            +
                            )
         | 
| 447 | 
            +
                        )
         | 
| 448 | 
            +
             | 
| 449 | 
            +
                def forward(self, x):
         | 
| 450 | 
            +
                    latents = self.latents.repeat(x.size(0), 1, 1)
         | 
| 451 | 
            +
                    x = self.proj_in(x)
         | 
| 452 | 
            +
                    for attn, ff in self.layers:
         | 
| 453 | 
            +
                        latents = attn(x, latents) + latents
         | 
| 454 | 
            +
                        latents = ff(latents) + latents
         | 
| 455 | 
            +
             | 
| 456 | 
            +
                    latents = self.proj_out(latents)
         | 
| 457 | 
            +
                    return self.norm_out(latents)
         | 
| 458 | 
            +
             | 
| 459 | 
            +
             | 
| 460 | 
            +
            class CondSequential(nn.Sequential):
         | 
| 461 | 
            +
                """
         | 
| 462 | 
            +
                A sequential module that passes timestep embeddings to the children that
         | 
| 463 | 
            +
                support it as an extra input.
         | 
| 464 | 
            +
                """
         | 
| 465 | 
            +
             | 
| 466 | 
            +
                def forward(self, x, emb, context=None, num_frames=1):
         | 
| 467 | 
            +
                    for layer in self:
         | 
| 468 | 
            +
                        if isinstance(layer, ResBlock):
         | 
| 469 | 
            +
                            x = layer(x, emb)
         | 
| 470 | 
            +
                        elif isinstance(layer, SpatialTransformer3D):
         | 
| 471 | 
            +
                            x = layer(x, context, num_frames=num_frames)
         | 
| 472 | 
            +
                        else:
         | 
| 473 | 
            +
                            x = layer(x)
         | 
| 474 | 
            +
                    return x
         | 
| 475 | 
            +
             | 
| 476 | 
            +
             | 
| 477 | 
            +
            class Upsample(nn.Module):
         | 
| 478 | 
            +
                """
         | 
| 479 | 
            +
                An upsampling layer with an optional convolution.
         | 
| 480 | 
            +
                :param channels: channels in the inputs and outputs.
         | 
| 481 | 
            +
                :param use_conv: a bool determining if a convolution is applied.
         | 
| 482 | 
            +
                :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
         | 
| 483 | 
            +
                             upsampling occurs in the inner-two dimensions.
         | 
| 484 | 
            +
                """
         | 
| 485 | 
            +
             | 
| 486 | 
            +
                def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
         | 
| 487 | 
            +
                    super().__init__()
         | 
| 488 | 
            +
                    self.channels = channels
         | 
| 489 | 
            +
                    self.out_channels = out_channels or channels
         | 
| 490 | 
            +
                    self.use_conv = use_conv
         | 
| 491 | 
            +
                    self.dims = dims
         | 
| 492 | 
            +
                    if use_conv:
         | 
| 493 | 
            +
                        self.conv = conv_nd(
         | 
| 494 | 
            +
                            dims, self.channels, self.out_channels, 3, padding=padding
         | 
| 495 | 
            +
                        )
         | 
| 496 | 
            +
             | 
| 497 | 
            +
                def forward(self, x):
         | 
| 498 | 
            +
                    assert x.shape[1] == self.channels
         | 
| 499 | 
            +
                    if self.dims == 3:
         | 
| 500 | 
            +
                        x = F.interpolate(
         | 
| 501 | 
            +
                            x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
         | 
| 502 | 
            +
                        )
         | 
| 503 | 
            +
                    else:
         | 
| 504 | 
            +
                        x = F.interpolate(x, scale_factor=2, mode="nearest")
         | 
| 505 | 
            +
                    if self.use_conv:
         | 
| 506 | 
            +
                        x = self.conv(x)
         | 
| 507 | 
            +
                    return x
         | 
| 508 | 
            +
             | 
| 509 | 
            +
             | 
| 510 | 
            +
            class Downsample(nn.Module):
         | 
| 511 | 
            +
                """
         | 
| 512 | 
            +
                A downsampling layer with an optional convolution.
         | 
| 513 | 
            +
                :param channels: channels in the inputs and outputs.
         | 
| 514 | 
            +
                :param use_conv: a bool determining if a convolution is applied.
         | 
| 515 | 
            +
                :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
         | 
| 516 | 
            +
                             downsampling occurs in the inner-two dimensions.
         | 
| 517 | 
            +
                """
         | 
| 518 | 
            +
             | 
| 519 | 
            +
                def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
         | 
| 520 | 
            +
                    super().__init__()
         | 
| 521 | 
            +
                    self.channels = channels
         | 
| 522 | 
            +
                    self.out_channels = out_channels or channels
         | 
| 523 | 
            +
                    self.use_conv = use_conv
         | 
| 524 | 
            +
                    self.dims = dims
         | 
| 525 | 
            +
                    stride = 2 if dims != 3 else (1, 2, 2)
         | 
| 526 | 
            +
                    if use_conv:
         | 
| 527 | 
            +
                        self.op = conv_nd(
         | 
| 528 | 
            +
                            dims,
         | 
| 529 | 
            +
                            self.channels,
         | 
| 530 | 
            +
                            self.out_channels,
         | 
| 531 | 
            +
                            3,
         | 
| 532 | 
            +
                            stride=stride,
         | 
| 533 | 
            +
                            padding=padding,
         | 
| 534 | 
            +
                        )
         | 
| 535 | 
            +
                    else:
         | 
| 536 | 
            +
                        assert self.channels == self.out_channels
         | 
| 537 | 
            +
                        self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
         | 
| 538 | 
            +
             | 
| 539 | 
            +
                def forward(self, x):
         | 
| 540 | 
            +
                    assert x.shape[1] == self.channels
         | 
| 541 | 
            +
                    return self.op(x)
         | 
| 542 | 
            +
             | 
| 543 | 
            +
             | 
| 544 | 
            +
            class ResBlock(nn.Module):
         | 
| 545 | 
            +
                """
         | 
| 546 | 
            +
                A residual block that can optionally change the number of channels.
         | 
| 547 | 
            +
                :param channels: the number of input channels.
         | 
| 548 | 
            +
                :param emb_channels: the number of timestep embedding channels.
         | 
| 549 | 
            +
                :param dropout: the rate of dropout.
         | 
| 550 | 
            +
                :param out_channels: if specified, the number of out channels.
         | 
| 551 | 
            +
                :param use_conv: if True and out_channels is specified, use a spatial
         | 
| 552 | 
            +
                    convolution instead of a smaller 1x1 convolution to change the
         | 
| 553 | 
            +
                    channels in the skip connection.
         | 
| 554 | 
            +
                :param dims: determines if the signal is 1D, 2D, or 3D.
         | 
| 555 | 
            +
                :param up: if True, use this block for upsampling.
         | 
| 556 | 
            +
                :param down: if True, use this block for downsampling.
         | 
| 557 | 
            +
                """
         | 
| 558 | 
            +
             | 
| 559 | 
            +
                def __init__(
         | 
| 560 | 
            +
                    self,
         | 
| 561 | 
            +
                    channels,
         | 
| 562 | 
            +
                    emb_channels,
         | 
| 563 | 
            +
                    dropout,
         | 
| 564 | 
            +
                    out_channels=None,
         | 
| 565 | 
            +
                    use_conv=False,
         | 
| 566 | 
            +
                    use_scale_shift_norm=False,
         | 
| 567 | 
            +
                    dims=2,
         | 
| 568 | 
            +
                    up=False,
         | 
| 569 | 
            +
                    down=False,
         | 
| 570 | 
            +
                ):
         | 
| 571 | 
            +
                    super().__init__()
         | 
| 572 | 
            +
                    self.channels = channels
         | 
| 573 | 
            +
                    self.emb_channels = emb_channels
         | 
| 574 | 
            +
                    self.dropout = dropout
         | 
| 575 | 
            +
                    self.out_channels = out_channels or channels
         | 
| 576 | 
            +
                    self.use_conv = use_conv
         | 
| 577 | 
            +
                    self.use_scale_shift_norm = use_scale_shift_norm
         | 
| 578 | 
            +
             | 
| 579 | 
            +
                    self.in_layers = nn.Sequential(
         | 
| 580 | 
            +
                        nn.GroupNorm(32, channels),
         | 
| 581 | 
            +
                        nn.SiLU(),
         | 
| 582 | 
            +
                        conv_nd(dims, channels, self.out_channels, 3, padding=1),
         | 
| 583 | 
            +
                    )
         | 
| 584 | 
            +
             | 
| 585 | 
            +
                    self.updown = up or down
         | 
| 586 | 
            +
             | 
| 587 | 
            +
                    if up:
         | 
| 588 | 
            +
                        self.h_upd = Upsample(channels, False, dims)
         | 
| 589 | 
            +
                        self.x_upd = Upsample(channels, False, dims)
         | 
| 590 | 
            +
                    elif down:
         | 
| 591 | 
            +
                        self.h_upd = Downsample(channels, False, dims)
         | 
| 592 | 
            +
                        self.x_upd = Downsample(channels, False, dims)
         | 
| 593 | 
            +
                    else:
         | 
| 594 | 
            +
                        self.h_upd = self.x_upd = nn.Identity()
         | 
| 595 | 
            +
             | 
| 596 | 
            +
                    self.emb_layers = nn.Sequential(
         | 
| 597 | 
            +
                        nn.SiLU(),
         | 
| 598 | 
            +
                        nn.Linear(
         | 
| 599 | 
            +
                            emb_channels,
         | 
| 600 | 
            +
                            2 * self.out_channels if use_scale_shift_norm else self.out_channels,
         | 
| 601 | 
            +
                        ),
         | 
| 602 | 
            +
                    )
         | 
| 603 | 
            +
                    self.out_layers = nn.Sequential(
         | 
| 604 | 
            +
                        nn.GroupNorm(32, self.out_channels),
         | 
| 605 | 
            +
                        nn.SiLU(),
         | 
| 606 | 
            +
                        nn.Dropout(p=dropout),
         | 
| 607 | 
            +
                        zero_module(
         | 
| 608 | 
            +
                            conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
         | 
| 609 | 
            +
                        ),
         | 
| 610 | 
            +
                    )
         | 
| 611 | 
            +
             | 
| 612 | 
            +
                    if self.out_channels == channels:
         | 
| 613 | 
            +
                        self.skip_connection = nn.Identity()
         | 
| 614 | 
            +
                    elif use_conv:
         | 
| 615 | 
            +
                        self.skip_connection = conv_nd(
         | 
| 616 | 
            +
                            dims, channels, self.out_channels, 3, padding=1
         | 
| 617 | 
            +
                        )
         | 
| 618 | 
            +
                    else:
         | 
| 619 | 
            +
                        self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
         | 
| 620 | 
            +
             | 
| 621 | 
            +
                def forward(self, x, emb):
         | 
| 622 | 
            +
                    if self.updown:
         | 
| 623 | 
            +
                        in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
         | 
| 624 | 
            +
                        h = in_rest(x)
         | 
| 625 | 
            +
                        h = self.h_upd(h)
         | 
| 626 | 
            +
                        x = self.x_upd(x)
         | 
| 627 | 
            +
                        h = in_conv(h)
         | 
| 628 | 
            +
                    else:
         | 
| 629 | 
            +
                        h = self.in_layers(x)
         | 
| 630 | 
            +
                    emb_out = self.emb_layers(emb).type(h.dtype)
         | 
| 631 | 
            +
                    while len(emb_out.shape) < len(h.shape):
         | 
| 632 | 
            +
                        emb_out = emb_out[..., None]
         | 
| 633 | 
            +
                    if self.use_scale_shift_norm:
         | 
| 634 | 
            +
                        out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
         | 
| 635 | 
            +
                        scale, shift = torch.chunk(emb_out, 2, dim=1)
         | 
| 636 | 
            +
                        h = out_norm(h) * (1 + scale) + shift
         | 
| 637 | 
            +
                        h = out_rest(h)
         | 
| 638 | 
            +
                    else:
         | 
| 639 | 
            +
                        h = h + emb_out
         | 
| 640 | 
            +
                        h = self.out_layers(h)
         | 
| 641 | 
            +
                    return self.skip_connection(x) + h
         | 
| 642 | 
            +
             | 
| 643 | 
            +
             | 
| 644 | 
            +
            class MultiViewUNetModel(ModelMixin, ConfigMixin):
         | 
| 645 | 
            +
                """
         | 
| 646 | 
            +
                The full multi-view UNet model with attention, timestep embedding and camera embedding.
         | 
| 647 | 
            +
                :param in_channels: channels in the input Tensor.
         | 
| 648 | 
            +
                :param model_channels: base channel count for the model.
         | 
| 649 | 
            +
                :param out_channels: channels in the output Tensor.
         | 
| 650 | 
            +
                :param num_res_blocks: number of residual blocks per downsample.
         | 
| 651 | 
            +
                :param attention_resolutions: a collection of downsample rates at which
         | 
| 652 | 
            +
                    attention will take place. May be a set, list, or tuple.
         | 
| 653 | 
            +
                    For example, if this contains 4, then at 4x downsampling, attention
         | 
| 654 | 
            +
                    will be used.
         | 
| 655 | 
            +
                :param dropout: the dropout probability.
         | 
| 656 | 
            +
                :param channel_mult: channel multiplier for each level of the UNet.
         | 
| 657 | 
            +
                :param conv_resample: if True, use learned convolutions for upsampling and
         | 
| 658 | 
            +
                    downsampling.
         | 
| 659 | 
            +
                :param dims: determines if the signal is 1D, 2D, or 3D.
         | 
| 660 | 
            +
                :param num_classes: if specified (as an int), then this model will be
         | 
| 661 | 
            +
                    class-conditional with `num_classes` classes.
         | 
| 662 | 
            +
                :param num_heads: the number of attention heads in each attention layer.
         | 
| 663 | 
            +
                :param num_heads_channels: if specified, ignore num_heads and instead use
         | 
| 664 | 
            +
                                           a fixed channel width per attention head.
         | 
| 665 | 
            +
                :param num_heads_upsample: works with num_heads to set a different number
         | 
| 666 | 
            +
                                           of heads for upsampling. Deprecated.
         | 
| 667 | 
            +
                :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
         | 
| 668 | 
            +
                :param resblock_updown: use residual blocks for up/downsampling.
         | 
| 669 | 
            +
                :param use_new_attention_order: use a different attention pattern for potentially
         | 
| 670 | 
            +
                                                increased efficiency.
         | 
| 671 | 
            +
                :param camera_dim: dimensionality of camera input.
         | 
| 672 | 
            +
                """
         | 
| 673 | 
            +
             | 
| 674 | 
            +
                def __init__(
         | 
| 675 | 
            +
                    self,
         | 
| 676 | 
            +
                    image_size,
         | 
| 677 | 
            +
                    in_channels,
         | 
| 678 | 
            +
                    model_channels,
         | 
| 679 | 
            +
                    out_channels,
         | 
| 680 | 
            +
                    num_res_blocks,
         | 
| 681 | 
            +
                    attention_resolutions,
         | 
| 682 | 
            +
                    dropout=0,
         | 
| 683 | 
            +
                    channel_mult=(1, 2, 4, 8),
         | 
| 684 | 
            +
                    conv_resample=True,
         | 
| 685 | 
            +
                    dims=2,
         | 
| 686 | 
            +
                    num_classes=None,
         | 
| 687 | 
            +
                    num_heads=-1,
         | 
| 688 | 
            +
                    num_head_channels=-1,
         | 
| 689 | 
            +
                    num_heads_upsample=-1,
         | 
| 690 | 
            +
                    use_scale_shift_norm=False,
         | 
| 691 | 
            +
                    resblock_updown=False,
         | 
| 692 | 
            +
                    transformer_depth=1,
         | 
| 693 | 
            +
                    context_dim=None,
         | 
| 694 | 
            +
                    n_embed=None,
         | 
| 695 | 
            +
                    num_attention_blocks=None,
         | 
| 696 | 
            +
                    adm_in_channels=None,
         | 
| 697 | 
            +
                    camera_dim=None,
         | 
| 698 | 
            +
                    ip_dim=0,  # imagedream uses ip_dim > 0
         | 
| 699 | 
            +
                    ip_weight=1.0,
         | 
| 700 | 
            +
                    **kwargs,
         | 
| 701 | 
            +
                ):
         | 
| 702 | 
            +
                    super().__init__()
         | 
| 703 | 
            +
                    assert context_dim is not None
         | 
| 704 | 
            +
             | 
| 705 | 
            +
                    if num_heads_upsample == -1:
         | 
| 706 | 
            +
                        num_heads_upsample = num_heads
         | 
| 707 | 
            +
             | 
| 708 | 
            +
                    if num_heads == -1:
         | 
| 709 | 
            +
                        assert (
         | 
| 710 | 
            +
                            num_head_channels != -1
         | 
| 711 | 
            +
                        ), "Either num_heads or num_head_channels has to be set"
         | 
| 712 | 
            +
             | 
| 713 | 
            +
                    if num_head_channels == -1:
         | 
| 714 | 
            +
                        assert (
         | 
| 715 | 
            +
                            num_heads != -1
         | 
| 716 | 
            +
                        ), "Either num_heads or num_head_channels has to be set"
         | 
| 717 | 
            +
             | 
| 718 | 
            +
                    self.image_size = image_size
         | 
| 719 | 
            +
                    self.in_channels = in_channels
         | 
| 720 | 
            +
                    self.model_channels = model_channels
         | 
| 721 | 
            +
                    self.out_channels = out_channels
         | 
| 722 | 
            +
                    if isinstance(num_res_blocks, int):
         | 
| 723 | 
            +
                        self.num_res_blocks = len(channel_mult) * [num_res_blocks]
         | 
| 724 | 
            +
                    else:
         | 
| 725 | 
            +
                        if len(num_res_blocks) != len(channel_mult):
         | 
| 726 | 
            +
                            raise ValueError(
         | 
| 727 | 
            +
                                "provide num_res_blocks either as an int (globally constant) or "
         | 
| 728 | 
            +
                                "as a list/tuple (per-level) with the same length as channel_mult"
         | 
| 729 | 
            +
                            )
         | 
| 730 | 
            +
                        self.num_res_blocks = num_res_blocks
         | 
| 731 | 
            +
             | 
| 732 | 
            +
                    if num_attention_blocks is not None:
         | 
| 733 | 
            +
                        assert len(num_attention_blocks) == len(self.num_res_blocks)
         | 
| 734 | 
            +
                        assert all(
         | 
| 735 | 
            +
                            map(
         | 
| 736 | 
            +
                                lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
         | 
| 737 | 
            +
                                range(len(num_attention_blocks)),
         | 
| 738 | 
            +
                            )
         | 
| 739 | 
            +
                        )
         | 
| 740 | 
            +
                        print(
         | 
| 741 | 
            +
                            f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
         | 
| 742 | 
            +
                            f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
         | 
| 743 | 
            +
                            f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
         | 
| 744 | 
            +
                            f"attention will still not be set."
         | 
| 745 | 
            +
                        )
         | 
| 746 | 
            +
             | 
| 747 | 
            +
                    self.attention_resolutions = attention_resolutions
         | 
| 748 | 
            +
                    self.dropout = dropout
         | 
| 749 | 
            +
                    self.channel_mult = channel_mult
         | 
| 750 | 
            +
                    self.conv_resample = conv_resample
         | 
| 751 | 
            +
                    self.num_classes = num_classes
         | 
| 752 | 
            +
                    self.num_heads = num_heads
         | 
| 753 | 
            +
                    self.num_head_channels = num_head_channels
         | 
| 754 | 
            +
                    self.num_heads_upsample = num_heads_upsample
         | 
| 755 | 
            +
                    self.predict_codebook_ids = n_embed is not None
         | 
| 756 | 
            +
             | 
| 757 | 
            +
                    self.ip_dim = ip_dim
         | 
| 758 | 
            +
                    self.ip_weight = ip_weight
         | 
| 759 | 
            +
             | 
| 760 | 
            +
                    if self.ip_dim > 0:
         | 
| 761 | 
            +
                        self.image_embed = Resampler(
         | 
| 762 | 
            +
                            dim=context_dim,
         | 
| 763 | 
            +
                            depth=4,
         | 
| 764 | 
            +
                            dim_head=64,
         | 
| 765 | 
            +
                            heads=12,
         | 
| 766 | 
            +
                            num_queries=ip_dim,  # num token
         | 
| 767 | 
            +
                            embedding_dim=1280,
         | 
| 768 | 
            +
                            output_dim=context_dim,
         | 
| 769 | 
            +
                            ff_mult=4,
         | 
| 770 | 
            +
                        )
         | 
| 771 | 
            +
             | 
| 772 | 
            +
                    time_embed_dim = model_channels * 4
         | 
| 773 | 
            +
                    self.time_embed = nn.Sequential(
         | 
| 774 | 
            +
                        nn.Linear(model_channels, time_embed_dim),
         | 
| 775 | 
            +
                        nn.SiLU(),
         | 
| 776 | 
            +
                        nn.Linear(time_embed_dim, time_embed_dim),
         | 
| 777 | 
            +
                    )
         | 
| 778 | 
            +
             | 
| 779 | 
            +
                    if camera_dim is not None:
         | 
| 780 | 
            +
                        time_embed_dim = model_channels * 4
         | 
| 781 | 
            +
                        self.camera_embed = nn.Sequential(
         | 
| 782 | 
            +
                            nn.Linear(camera_dim, time_embed_dim),
         | 
| 783 | 
            +
                            nn.SiLU(),
         | 
| 784 | 
            +
                            nn.Linear(time_embed_dim, time_embed_dim),
         | 
| 785 | 
            +
                        )
         | 
| 786 | 
            +
             | 
| 787 | 
            +
                    if self.num_classes is not None:
         | 
| 788 | 
            +
                        if isinstance(self.num_classes, int):
         | 
| 789 | 
            +
                            self.label_emb = nn.Embedding(self.num_classes, time_embed_dim)
         | 
| 790 | 
            +
                        elif self.num_classes == "continuous":
         | 
| 791 | 
            +
                            # print("setting up linear c_adm embedding layer")
         | 
| 792 | 
            +
                            self.label_emb = nn.Linear(1, time_embed_dim)
         | 
| 793 | 
            +
                        elif self.num_classes == "sequential":
         | 
| 794 | 
            +
                            assert adm_in_channels is not None
         | 
| 795 | 
            +
                            self.label_emb = nn.Sequential(
         | 
| 796 | 
            +
                                nn.Sequential(
         | 
| 797 | 
            +
                                    nn.Linear(adm_in_channels, time_embed_dim),
         | 
| 798 | 
            +
                                    nn.SiLU(),
         | 
| 799 | 
            +
                                    nn.Linear(time_embed_dim, time_embed_dim),
         | 
| 800 | 
            +
                                )
         | 
| 801 | 
            +
                            )
         | 
| 802 | 
            +
                        else:
         | 
| 803 | 
            +
                            raise ValueError()
         | 
| 804 | 
            +
             | 
| 805 | 
            +
                    self.input_blocks = nn.ModuleList(
         | 
| 806 | 
            +
                        [CondSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))]
         | 
| 807 | 
            +
                    )
         | 
| 808 | 
            +
                    self._feature_size = model_channels
         | 
| 809 | 
            +
                    input_block_chans = [model_channels]
         | 
| 810 | 
            +
                    ch = model_channels
         | 
| 811 | 
            +
                    ds = 1
         | 
| 812 | 
            +
                    for level, mult in enumerate(channel_mult):
         | 
| 813 | 
            +
                        for nr in range(self.num_res_blocks[level]):
         | 
| 814 | 
            +
                            layers: List[Any] = [
         | 
| 815 | 
            +
                                ResBlock(
         | 
| 816 | 
            +
                                    ch,
         | 
| 817 | 
            +
                                    time_embed_dim,
         | 
| 818 | 
            +
                                    dropout,
         | 
| 819 | 
            +
                                    out_channels=mult * model_channels,
         | 
| 820 | 
            +
                                    dims=dims,
         | 
| 821 | 
            +
                                    use_scale_shift_norm=use_scale_shift_norm,
         | 
| 822 | 
            +
                                )
         | 
| 823 | 
            +
                            ]
         | 
| 824 | 
            +
                            ch = mult * model_channels
         | 
| 825 | 
            +
                            if ds in attention_resolutions:
         | 
| 826 | 
            +
                                if num_head_channels == -1:
         | 
| 827 | 
            +
                                    dim_head = ch // num_heads
         | 
| 828 | 
            +
                                else:
         | 
| 829 | 
            +
                                    num_heads = ch // num_head_channels
         | 
| 830 | 
            +
                                    dim_head = num_head_channels
         | 
| 831 | 
            +
             | 
| 832 | 
            +
                                if num_attention_blocks is None or nr < num_attention_blocks[level]:
         | 
| 833 | 
            +
                                    layers.append(
         | 
| 834 | 
            +
                                        SpatialTransformer3D(
         | 
| 835 | 
            +
                                            ch,
         | 
| 836 | 
            +
                                            num_heads,
         | 
| 837 | 
            +
                                            dim_head,
         | 
| 838 | 
            +
                                            context_dim=context_dim,
         | 
| 839 | 
            +
                                            depth=transformer_depth,
         | 
| 840 | 
            +
                                            ip_dim=self.ip_dim,
         | 
| 841 | 
            +
                                            ip_weight=self.ip_weight,
         | 
| 842 | 
            +
                                        )
         | 
| 843 | 
            +
                                    )
         | 
| 844 | 
            +
                            self.input_blocks.append(CondSequential(*layers))
         | 
| 845 | 
            +
                            self._feature_size += ch
         | 
| 846 | 
            +
                            input_block_chans.append(ch)
         | 
| 847 | 
            +
                        if level != len(channel_mult) - 1:
         | 
| 848 | 
            +
                            out_ch = ch
         | 
| 849 | 
            +
                            self.input_blocks.append(
         | 
| 850 | 
            +
                                CondSequential(
         | 
| 851 | 
            +
                                    ResBlock(
         | 
| 852 | 
            +
                                        ch,
         | 
| 853 | 
            +
                                        time_embed_dim,
         | 
| 854 | 
            +
                                        dropout,
         | 
| 855 | 
            +
                                        out_channels=out_ch,
         | 
| 856 | 
            +
                                        dims=dims,
         | 
| 857 | 
            +
                                        use_scale_shift_norm=use_scale_shift_norm,
         | 
| 858 | 
            +
                                        down=True,
         | 
| 859 | 
            +
                                    )
         | 
| 860 | 
            +
                                    if resblock_updown
         | 
| 861 | 
            +
                                    else Downsample(
         | 
| 862 | 
            +
                                        ch, conv_resample, dims=dims, out_channels=out_ch
         | 
| 863 | 
            +
                                    )
         | 
| 864 | 
            +
                                )
         | 
| 865 | 
            +
                            )
         | 
| 866 | 
            +
                            ch = out_ch
         | 
| 867 | 
            +
                            input_block_chans.append(ch)
         | 
| 868 | 
            +
                            ds *= 2
         | 
| 869 | 
            +
                            self._feature_size += ch
         | 
| 870 | 
            +
             | 
| 871 | 
            +
                    if num_head_channels == -1:
         | 
| 872 | 
            +
                        dim_head = ch // num_heads
         | 
| 873 | 
            +
                    else:
         | 
| 874 | 
            +
                        num_heads = ch // num_head_channels
         | 
| 875 | 
            +
                        dim_head = num_head_channels
         | 
| 876 | 
            +
             | 
| 877 | 
            +
                    self.middle_block = CondSequential(
         | 
| 878 | 
            +
                        ResBlock(
         | 
| 879 | 
            +
                            ch,
         | 
| 880 | 
            +
                            time_embed_dim,
         | 
| 881 | 
            +
                            dropout,
         | 
| 882 | 
            +
                            dims=dims,
         | 
| 883 | 
            +
                            use_scale_shift_norm=use_scale_shift_norm,
         | 
| 884 | 
            +
                        ),
         | 
| 885 | 
            +
                        SpatialTransformer3D(
         | 
| 886 | 
            +
                            ch,
         | 
| 887 | 
            +
                            num_heads,
         | 
| 888 | 
            +
                            dim_head,
         | 
| 889 | 
            +
                            context_dim=context_dim,
         | 
| 890 | 
            +
                            depth=transformer_depth,
         | 
| 891 | 
            +
                            ip_dim=self.ip_dim,
         | 
| 892 | 
            +
                            ip_weight=self.ip_weight,
         | 
| 893 | 
            +
                        ),
         | 
| 894 | 
            +
                        ResBlock(
         | 
| 895 | 
            +
                            ch,
         | 
| 896 | 
            +
                            time_embed_dim,
         | 
| 897 | 
            +
                            dropout,
         | 
| 898 | 
            +
                            dims=dims,
         | 
| 899 | 
            +
                            use_scale_shift_norm=use_scale_shift_norm,
         | 
| 900 | 
            +
                        ),
         | 
| 901 | 
            +
                    )
         | 
| 902 | 
            +
                    self._feature_size += ch
         | 
| 903 | 
            +
             | 
| 904 | 
            +
                    self.output_blocks = nn.ModuleList([])
         | 
| 905 | 
            +
                    for level, mult in list(enumerate(channel_mult))[::-1]:
         | 
| 906 | 
            +
                        for i in range(self.num_res_blocks[level] + 1):
         | 
| 907 | 
            +
                            ich = input_block_chans.pop()
         | 
| 908 | 
            +
                            layers = [
         | 
| 909 | 
            +
                                ResBlock(
         | 
| 910 | 
            +
                                    ch + ich,
         | 
| 911 | 
            +
                                    time_embed_dim,
         | 
| 912 | 
            +
                                    dropout,
         | 
| 913 | 
            +
                                    out_channels=model_channels * mult,
         | 
| 914 | 
            +
                                    dims=dims,
         | 
| 915 | 
            +
                                    use_scale_shift_norm=use_scale_shift_norm,
         | 
| 916 | 
            +
                                )
         | 
| 917 | 
            +
                            ]
         | 
| 918 | 
            +
                            ch = model_channels * mult
         | 
| 919 | 
            +
                            if ds in attention_resolutions:
         | 
| 920 | 
            +
                                if num_head_channels == -1:
         | 
| 921 | 
            +
                                    dim_head = ch // num_heads
         | 
| 922 | 
            +
                                else:
         | 
| 923 | 
            +
                                    num_heads = ch // num_head_channels
         | 
| 924 | 
            +
                                    dim_head = num_head_channels
         | 
| 925 | 
            +
             | 
| 926 | 
            +
                                if num_attention_blocks is None or i < num_attention_blocks[level]:
         | 
| 927 | 
            +
                                    layers.append(
         | 
| 928 | 
            +
                                        SpatialTransformer3D(
         | 
| 929 | 
            +
                                            ch,
         | 
| 930 | 
            +
                                            num_heads,
         | 
| 931 | 
            +
                                            dim_head,
         | 
| 932 | 
            +
                                            context_dim=context_dim,
         | 
| 933 | 
            +
                                            depth=transformer_depth,
         | 
| 934 | 
            +
                                            ip_dim=self.ip_dim,
         | 
| 935 | 
            +
                                            ip_weight=self.ip_weight,
         | 
| 936 | 
            +
                                        )
         | 
| 937 | 
            +
                                    )
         | 
| 938 | 
            +
                            if level and i == self.num_res_blocks[level]:
         | 
| 939 | 
            +
                                out_ch = ch
         | 
| 940 | 
            +
                                layers.append(
         | 
| 941 | 
            +
                                    ResBlock(
         | 
| 942 | 
            +
                                        ch,
         | 
| 943 | 
            +
                                        time_embed_dim,
         | 
| 944 | 
            +
                                        dropout,
         | 
| 945 | 
            +
                                        out_channels=out_ch,
         | 
| 946 | 
            +
                                        dims=dims,
         | 
| 947 | 
            +
                                        use_scale_shift_norm=use_scale_shift_norm,
         | 
| 948 | 
            +
                                        up=True,
         | 
| 949 | 
            +
                                    )
         | 
| 950 | 
            +
                                    if resblock_updown
         | 
| 951 | 
            +
                                    else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
         | 
| 952 | 
            +
                                )
         | 
| 953 | 
            +
                                ds //= 2
         | 
| 954 | 
            +
                            self.output_blocks.append(CondSequential(*layers))
         | 
| 955 | 
            +
                            self._feature_size += ch
         | 
| 956 | 
            +
             | 
| 957 | 
            +
                    self.out = nn.Sequential(
         | 
| 958 | 
            +
                        nn.GroupNorm(32, ch),
         | 
| 959 | 
            +
                        nn.SiLU(),
         | 
| 960 | 
            +
                        zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
         | 
| 961 | 
            +
                    )
         | 
| 962 | 
            +
                    if self.predict_codebook_ids:
         | 
| 963 | 
            +
                        self.id_predictor = nn.Sequential(
         | 
| 964 | 
            +
                            nn.GroupNorm(32, ch),
         | 
| 965 | 
            +
                            conv_nd(dims, model_channels, n_embed, 1),
         | 
| 966 | 
            +
                            # nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
         | 
| 967 | 
            +
                        )
         | 
| 968 | 
            +
             | 
| 969 | 
            +
                def forward(
         | 
| 970 | 
            +
                    self,
         | 
| 971 | 
            +
                    x,
         | 
| 972 | 
            +
                    timesteps=None,
         | 
| 973 | 
            +
                    context=None,
         | 
| 974 | 
            +
                    y=None,
         | 
| 975 | 
            +
                    camera=None,
         | 
| 976 | 
            +
                    num_frames=1,
         | 
| 977 | 
            +
                    ip=None,
         | 
| 978 | 
            +
                    ip_img=None,
         | 
| 979 | 
            +
                    **kwargs,
         | 
| 980 | 
            +
                ):
         | 
| 981 | 
            +
                    """
         | 
| 982 | 
            +
                    Apply the model to an input batch.
         | 
| 983 | 
            +
                    :param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views).
         | 
| 984 | 
            +
                    :param timesteps: a 1-D batch of timesteps.
         | 
| 985 | 
            +
                    :param context: conditioning plugged in via crossattn
         | 
| 986 | 
            +
                    :param y: an [N] Tensor of labels, if class-conditional.
         | 
| 987 | 
            +
                    :param num_frames: a integer indicating number of frames for tensor reshaping.
         | 
| 988 | 
            +
                    :return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views).
         | 
| 989 | 
            +
                    """
         | 
| 990 | 
            +
                    assert (
         | 
| 991 | 
            +
                        x.shape[0] % num_frames == 0
         | 
| 992 | 
            +
                    ), "input batch size must be dividable by num_frames!"
         | 
| 993 | 
            +
                    assert (y is not None) == (
         | 
| 994 | 
            +
                        self.num_classes is not None
         | 
| 995 | 
            +
                    ), "must specify y if and only if the model is class-conditional"
         | 
| 996 | 
            +
             | 
| 997 | 
            +
                    hs = []
         | 
| 998 | 
            +
             | 
| 999 | 
            +
                    t_emb = timestep_embedding(
         | 
| 1000 | 
            +
                        timesteps, self.model_channels, repeat_only=False
         | 
| 1001 | 
            +
                    ).to(x.dtype)
         | 
| 1002 | 
            +
             | 
| 1003 | 
            +
                    emb = self.time_embed(t_emb)
         | 
| 1004 | 
            +
             | 
| 1005 | 
            +
                    if self.num_classes is not None:
         | 
| 1006 | 
            +
                        assert y is not None
         | 
| 1007 | 
            +
                        assert y.shape[0] == x.shape[0]
         | 
| 1008 | 
            +
                        emb = emb + self.label_emb(y)
         | 
| 1009 | 
            +
             | 
| 1010 | 
            +
                    # Add camera embeddings
         | 
| 1011 | 
            +
                    if camera is not None:
         | 
| 1012 | 
            +
                        emb = emb + self.camera_embed(camera)
         | 
| 1013 | 
            +
             | 
| 1014 | 
            +
                    # imagedream variant
         | 
| 1015 | 
            +
                    if self.ip_dim > 0:
         | 
| 1016 | 
            +
                        x[(num_frames - 1) :: num_frames, :, :, :] = ip_img  # place at [4, 9]
         | 
| 1017 | 
            +
                        ip_emb = self.image_embed(ip)
         | 
| 1018 | 
            +
                        context = torch.cat((context, ip_emb), 1)
         | 
| 1019 | 
            +
             | 
| 1020 | 
            +
                    h = x
         | 
| 1021 | 
            +
                    for module in self.input_blocks:
         | 
| 1022 | 
            +
                        h = module(h, emb, context, num_frames=num_frames)
         | 
| 1023 | 
            +
                        hs.append(h)
         | 
| 1024 | 
            +
                    h = self.middle_block(h, emb, context, num_frames=num_frames)
         | 
| 1025 | 
            +
                    for module in self.output_blocks:
         | 
| 1026 | 
            +
                        h = torch.cat([h, hs.pop()], dim=1)
         | 
| 1027 | 
            +
                        h = module(h, emb, context, num_frames=num_frames)
         | 
| 1028 | 
            +
                    h = h.type(x.dtype)
         | 
| 1029 | 
            +
                    if self.predict_codebook_ids:
         | 
| 1030 | 
            +
                        return self.id_predictor(h)
         | 
| 1031 | 
            +
                    else:
         | 
| 1032 | 
            +
                        return self.out(h)
         | 
| 1033 | 
            +
             | 
| 1034 |  | 
| 1035 | 
             
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 1036 |  | 
|  | |
| 1419 |  | 
| 1420 | 
             
                    if image.dtype == np.float32:
         | 
| 1421 | 
             
                        image = (image * 255).astype(np.uint8)
         | 
| 1422 | 
            +
             | 
| 1423 | 
             
                    image = self.feature_extractor(image, return_tensors="pt").pixel_values
         | 
| 1424 | 
             
                    image = image.to(device=device, dtype=dtype)
         | 
| 1425 | 
            +
             | 
| 1426 | 
            +
                    image_embeds = self.image_encoder(
         | 
| 1427 | 
            +
                        image, output_hidden_states=True
         | 
| 1428 | 
            +
                    ).hidden_states[-2]
         | 
| 1429 | 
             
                    image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
         | 
| 1430 |  | 
| 1431 | 
             
                    return torch.zeros_like(image_embeds), image_embeds
         | 
| 1432 |  | 
| 1433 | 
             
                def encode_image_latents(self, image, device, num_images_per_prompt):
         | 
| 1434 | 
            +
             | 
| 1435 | 
             
                    dtype = next(self.image_encoder.parameters()).dtype
         | 
| 1436 |  | 
| 1437 | 
            +
                    image = (
         | 
| 1438 | 
            +
                        torch.from_numpy(image).unsqueeze(0).permute(0, 3, 1, 2).to(device=device)
         | 
| 1439 | 
            +
                    )  # [1, 3, H, W]
         | 
| 1440 | 
             
                    image = 2 * image - 1
         | 
| 1441 | 
            +
                    image = F.interpolate(image, (256, 256), mode="bilinear", align_corners=False)
         | 
| 1442 | 
             
                    image = image.to(dtype=dtype)
         | 
| 1443 |  | 
| 1444 | 
             
                    posterior = self.vae.encode(image).latent_dist
         | 
| 1445 | 
            +
                    latents = posterior.sample() * self.vae.config.scaling_factor  # [B, C, H, W]
         | 
| 1446 | 
             
                    latents = latents.repeat_interleave(num_images_per_prompt, dim=0)
         | 
| 1447 |  | 
| 1448 | 
             
                    return torch.zeros_like(latents), latents
         | 
|  | |
| 1461 | 
             
                    num_images_per_prompt: int = 1,
         | 
| 1462 | 
             
                    eta: float = 0.0,
         | 
| 1463 | 
             
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         | 
| 1464 | 
            +
                    output_type: Optional[str] = "numpy",  # pil, numpy, latents
         | 
| 1465 | 
             
                    callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
         | 
| 1466 | 
             
                    callback_steps: int = 1,
         | 
| 1467 | 
             
                    num_frames: int = 4,
         | 
|  | |
| 1484 | 
             
                    if image is not None:
         | 
| 1485 | 
             
                        assert isinstance(image, np.ndarray) and image.dtype == np.float32
         | 
| 1486 | 
             
                        self.image_encoder = self.image_encoder.to(device=device)
         | 
| 1487 | 
            +
                        image_embeds_neg, image_embeds_pos = self.encode_image(
         | 
| 1488 | 
            +
                            image, device, num_images_per_prompt
         | 
| 1489 | 
            +
                        )
         | 
| 1490 | 
            +
                        image_latents_neg, image_latents_pos = self.encode_image_latents(
         | 
| 1491 | 
            +
                            image, device, num_images_per_prompt
         | 
| 1492 | 
            +
                        )
         | 
| 1493 | 
            +
             | 
| 1494 | 
             
                    _prompt_embeds = self._encode_prompt(
         | 
| 1495 | 
             
                        prompt=prompt,
         | 
| 1496 | 
             
                        device=device,
         | 
|  | |
| 1514 | 
             
                    )
         | 
| 1515 |  | 
| 1516 | 
             
                    # Get camera
         | 
| 1517 | 
            +
                    camera = get_camera(
         | 
| 1518 | 
            +
                        num_frames, elevation=elevation, extra_view=(image is not None)
         | 
| 1519 | 
            +
                    ).to(dtype=latents.dtype, device=device)
         | 
| 1520 | 
             
                    camera = camera.repeat_interleave(num_images_per_prompt, dim=0)
         | 
| 1521 |  | 
| 1522 | 
             
                    # Prepare extra step kwargs.
         | 
|  | |
| 1529 | 
             
                            # expand the latents if we are doing classifier free guidance
         | 
| 1530 | 
             
                            multiplier = 2 if do_classifier_free_guidance else 1
         | 
| 1531 | 
             
                            latent_model_input = torch.cat([latents] * multiplier)
         | 
| 1532 | 
            +
                            latent_model_input = self.scheduler.scale_model_input(
         | 
| 1533 | 
            +
                                latent_model_input, t
         | 
| 1534 | 
            +
                            )
         | 
| 1535 |  | 
| 1536 | 
             
                            unet_inputs = {
         | 
| 1537 | 
            +
                                "x": latent_model_input,
         | 
| 1538 | 
            +
                                "timesteps": torch.tensor(
         | 
| 1539 | 
            +
                                    [t] * actual_num_frames * multiplier,
         | 
| 1540 | 
            +
                                    dtype=latent_model_input.dtype,
         | 
| 1541 | 
            +
                                    device=device,
         | 
| 1542 | 
            +
                                ),
         | 
| 1543 | 
            +
                                "context": torch.cat(
         | 
| 1544 | 
            +
                                    [prompt_embeds_neg] * actual_num_frames
         | 
| 1545 | 
            +
                                    + [prompt_embeds_pos] * actual_num_frames
         | 
| 1546 | 
            +
                                ),
         | 
| 1547 | 
            +
                                "num_frames": actual_num_frames,
         | 
| 1548 | 
            +
                                "camera": torch.cat([camera] * multiplier),
         | 
| 1549 | 
             
                            }
         | 
| 1550 |  | 
| 1551 | 
             
                            if image is not None:
         | 
| 1552 | 
            +
                                unet_inputs["ip"] = torch.cat(
         | 
| 1553 | 
            +
                                    [image_embeds_neg] * actual_num_frames
         | 
| 1554 | 
            +
                                    + [image_embeds_pos] * actual_num_frames
         | 
| 1555 | 
            +
                                )
         | 
| 1556 | 
            +
                                unet_inputs["ip_img"] = torch.cat(
         | 
| 1557 | 
            +
                                    [image_latents_neg] + [image_latents_pos]
         | 
| 1558 | 
            +
                                )  # no repeat
         | 
| 1559 | 
            +
             | 
| 1560 | 
             
                            # predict the noise residual
         | 
| 1561 | 
             
                            noise_pred = self.unet.forward(**unet_inputs)
         | 
| 1562 |  | 
|  | |
| 1586 | 
             
                    elif output_type == "pil":
         | 
| 1587 | 
             
                        image = self.decode_latents(latents)
         | 
| 1588 | 
             
                        image = self.numpy_to_pil(image)
         | 
| 1589 | 
            +
                    else:  # numpy
         | 
| 1590 | 
             
                        image = self.decode_latents(latents)
         | 
| 1591 |  | 
| 1592 | 
             
                    # Offload last model to CPU
         | 
