from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity import numpy as np # Load fine-tuned model model = SentenceTransformer('ThanhLe0125/e5-small-math') print("🧪 Testing MRR-optimized fine-tuned model:") print("="*50) # Example: Vietnamese math question query = "query: Định nghĩa hàm số đồng biến" chunks = [ "passage: Hàm số đồng biến trên khoảng (a;b) là hàm số mà với mọi x1 < x2 thì f(x1) < f(x2)", "passage: Ví dụ: Tìm khoảng đồng biến của hàm số y = x^2 - 2x + 1", "passage: Phương trình bậc hai ax^2 + bx + c = 0 có delta = b^2 - 4ac", "passage: Tính đạo hàm của hàm số đa thức", "passage: Giới hạn của dãy số" ] # Encode and rank query_emb = model.encode([query]) chunk_embs = model.encode(chunks) similarities = cosine_similarity(query_emb, chunk_embs)[0] ranked_indices = similarities.argsort()[::-1] # Display results print("🎯 MRR-Optimized Rankings:") chunk_types = ["CORRECT", "RELATED", "IRRELEVANT", "IRRELEVANT", "IRRELEVANT"] for rank, idx in enumerate(ranked_indices, 1): print(f"Rank {rank}: {chunk_types[idx]:>10} (Score: {similarities[idx]:.4f})") print(f" {chunks[idx][:70]}...") print() # Calculate metrics for this query correct_rank = None for rank, idx in enumerate(ranked_indices, 1): if idx == 0: # First chunk is correct correct_rank = rank break if correct_rank: mrr = 1.0 / correct_rank recall_at_k = {} for k in [1, 2, 3, 4, 5]: recall_at_k[k] = 1 if correct_rank <= k else 0 print(f"📊 Query Metrics:") print(f" MRR: {mrr:.4f} (correct chunk at rank #{correct_rank})") print(f" Recall@1: {recall_at_k[1]} | Recall@2: {recall_at_k[2]} | Recall@3: {recall_at_k[3]}") print(f" Recall@4: {recall_at_k[4]} | Recall@5: {recall_at_k[5]}") if correct_rank == 1: print(" 🌟 PERFECT! Correct chunk at rank #1!") elif correct_rank <= 2: print(" 🎯 EXCELLENT! Correct chunk in top 2!") elif correct_rank <= 3: print(" 👍 GOOD! Correct chunk in top 3!") else: print(" 📈 Could be better - but still found the answer!") print("\n" + "="*50) print("💡 Fine-tuning Benefits:") print(" ✅ Pushes correct chunks to rank #1") print(" ✅ Reduces inference cost (need fewer chunks)") print(" ✅ Improves user experience (instant answers)") print(" ✅ Specialized for Vietnamese mathematics")