|
from typing import Dict, List, Tuple, Optional, Literal
|
|
|
|
import torch
|
|
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
|
from torchvision.transforms import ToTensor, Normalize
|
|
from rfdetr.util.misc import nested_tensor_from_tensor_list
|
|
from rfdetr.models.lwdetr import PostProcess
|
|
|
|
|
|
class RFDetrImageProcessor(BaseImageProcessor):
|
|
model_input_names = ["pixel_values", "pixel_mask"]
|
|
|
|
def __init__(
|
|
self,
|
|
model_name: Literal['RFDETRBase, RFDETRLarge']='RFDETRBase',
|
|
num_select: int=300,
|
|
image_mean: List[int]=[0.485, 0.456, 0.406],
|
|
image_std: List[int]=[0.229, 0.224, 0.225],
|
|
**kwargs
|
|
):
|
|
super().__init__(**kwargs)
|
|
self.model_name = model_name
|
|
self.config = {
|
|
'image_mean': image_mean,
|
|
'image_std': image_std,
|
|
}
|
|
self.post_process_config = {
|
|
'num_select': num_select,
|
|
}
|
|
|
|
def post_process_object_detection(
|
|
self,
|
|
outputs,
|
|
target_sizes: List[Tuple],
|
|
**kwargs
|
|
) -> List[Dict[str, torch.Tensor]]:
|
|
"""
|
|
Parameters
|
|
----------
|
|
outputs:
|
|
outputs from model loaded with AutoModelForObjectDetection or ONNX model
|
|
target_sizes: list[tuple]
|
|
original sizes of the images.
|
|
"""
|
|
if isinstance(outputs, list):
|
|
logits = torch.tensor(outputs[0])
|
|
pred_boxes = torch.tensor(outputs[1])
|
|
else:
|
|
logits = outputs.logits
|
|
pred_boxes = outputs.pred_boxes
|
|
|
|
outputs = {
|
|
'pred_logits': logits,
|
|
'pred_boxes': pred_boxes,
|
|
}
|
|
|
|
|
|
post_process = PostProcess(self.post_process_config['num_select'])
|
|
detections = post_process(
|
|
outputs,
|
|
target_sizes=target_sizes,
|
|
)
|
|
|
|
return detections
|
|
|
|
def convert_and_validate_boxes(self, annotations, images):
|
|
for ann, img in zip(annotations, images):
|
|
|
|
boxes = ann["boxes"].to(torch.float32)
|
|
boxes[:, [0,1]] += boxes[:, [2,3]] / 2
|
|
ann["boxes"] = boxes
|
|
|
|
torch._assert(isinstance(boxes, torch.Tensor), "Expected target boxes to be of type Tensor.")
|
|
torch._assert(
|
|
len(boxes.shape) == 2 and boxes.shape[-1] == 4,
|
|
"Expected target boxes to be a tensor of shape [N, 4].",
|
|
)
|
|
for box in boxes:
|
|
torch._assert(
|
|
box[2]/2 <= box[0] <= img.shape[2] - box[2]/2 and box[3]/2 <= box[1] <= img.shape[1] - box[3]/2,
|
|
"Expected w/2 <= x1 <= W - w/2 and h/2 <= cy <= H - h/2.",
|
|
)
|
|
|
|
def preprocess(
|
|
self,
|
|
images,
|
|
annotations=None,
|
|
) -> BatchFeature:
|
|
"""
|
|
Parameters
|
|
----------
|
|
images: List[PIL.Image.Image]
|
|
a single or a list of PIL images
|
|
annotations: Optional[List[Dict[str, torch.Tensor | List]]]
|
|
List of annotations associated with the image or batch of images. If annotation is for object
|
|
detection, the annotations should be a dictionary with the following keys:
|
|
- boxes (FloatTensor[N, 4]): the ground-truth boxes COCO format [x_min, y_min, width, height]
|
|
- class_labels (Int64Tensor[N]): the class label for each ground-truth box
|
|
"""
|
|
totensor = ToTensor()
|
|
normalize = Normalize(mean=self.config['image_mean'], std=self.config['image_std'])
|
|
|
|
if images is not None and not isinstance(images, list):
|
|
images = list(images)
|
|
if not isinstance(images[0], torch.Tensor):
|
|
images = [totensor(img) for img in images]
|
|
if annotations is not None:
|
|
self.convert_and_validate_boxes(annotations, images)
|
|
|
|
|
|
original_image_sizes: List[Tuple[int, int]] = []
|
|
for img in images:
|
|
val = img.shape[-2:]
|
|
torch._assert(
|
|
len(val) == 2,
|
|
f"expecting the last two dimensions of the Tensor to be H and W instead got {img.shape[-2:]}",
|
|
)
|
|
original_image_sizes.append((val[0], val[1]))
|
|
target_sizes = torch.tensor(original_image_sizes)
|
|
|
|
|
|
|
|
images = [normalize(img) for img in images]
|
|
|
|
nested_tensor = nested_tensor_from_tensor_list(images)
|
|
|
|
data = {
|
|
'pixel_values': nested_tensor.tensors,
|
|
'pixel_mask': nested_tensor.mask,
|
|
'target_sizes': target_sizes,
|
|
'labels': annotations
|
|
}
|
|
return BatchFeature(data=data)
|
|
|
|
|
|
__all__ = [
|
|
"RFDetrImageProcessor"
|
|
] |