|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ StableLM Epoch model configuration""" | 
					
						
						|  | from transformers import PretrainedConfig | 
					
						
						|  | from transformers.utils import logging | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class StableLMEpochConfig(PretrainedConfig): | 
					
						
						|  | r""" | 
					
						
						|  | Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | 
					
						
						|  | documentation from [`PretrainedConfig`] for more information. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vocab_size (`int`, *optional*, defaults to 50_304): | 
					
						
						|  | Vocabulary size of the StableLM model. Defines the number of different tokens that | 
					
						
						|  | can be represented by the `inputs_ids` passed when calling [`StableLMEpochModel`]. | 
					
						
						|  | intermediate_size (`int`, *optional*, defaults to 6912): | 
					
						
						|  | Dimension of the MLP representations. | 
					
						
						|  | hidden_size (`int`, *optional*, defaults to 2560): | 
					
						
						|  | Dimension of the decoder layers and the pooler layer. | 
					
						
						|  | num_hidden_layers (`int`, *optional*, defaults to 32): | 
					
						
						|  | Number of hidden layers in the Transformer decoder. | 
					
						
						|  | num_attention_heads (`int`, *optional*, defaults to 32): | 
					
						
						|  | Number of attention heads for each attention layer in the Transformer encoder. | 
					
						
						|  | num_key_value_heads (`int`, *optional*): | 
					
						
						|  | This is the number of key_value heads that should be used to implement Grouped Query Attention. If | 
					
						
						|  | `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | 
					
						
						|  | `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | 
					
						
						|  | converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | 
					
						
						|  | by meanpooling all the original heads within that group. For more details checkout [this | 
					
						
						|  | paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to | 
					
						
						|  | `num_attention_heads`. | 
					
						
						|  | hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | 
					
						
						|  | The non-linear activation function (function or string). | 
					
						
						|  | rope_pct (`float`, *optional*, defaults to 1.0): | 
					
						
						|  | Percentage of hidden dimensions to allocate to rotary embeddings. | 
					
						
						|  | rope_theta (`float`, *optional*, defaults to 10000.0): | 
					
						
						|  | The base period of the RoPE embeddings. | 
					
						
						|  | max_position_embeddings (`int`, *optional*, defaults to 2048): | 
					
						
						|  | The maximum sequence length that this model might ever be used with. | 
					
						
						|  | Typically set this to something large just in case (e.g., 512 or 1024 or 2048). | 
					
						
						|  | initializer_range (`float`, *optional*, defaults to 1e-5): | 
					
						
						|  | The standard deviation of the truncated_normal_initializer for initializing | 
					
						
						|  | all weight matrices. | 
					
						
						|  | norm_eps (`float`, *optional*, defaults to 1e-8): | 
					
						
						|  | The epsilon used by the normalization layers. | 
					
						
						|  | use_cache (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not the model should return the last key/values attentions | 
					
						
						|  | (not used by all models). Only relevant if `config.is_decoder=True`. | 
					
						
						|  | tie_word_embeddings(`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to tie weight embeddings | 
					
						
						|  | """ | 
					
						
						|  | model_type = "stablelm_epoch" | 
					
						
						|  | keys_to_ignore_at_inference = ["past_key_values"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vocab_size=50_304, | 
					
						
						|  | intermediate_size=6912, | 
					
						
						|  | hidden_size=2560, | 
					
						
						|  | num_hidden_layers=32, | 
					
						
						|  | num_attention_heads=32, | 
					
						
						|  | num_key_value_heads=32, | 
					
						
						|  | hidden_act="silu", | 
					
						
						|  | rope_pct=0.25, | 
					
						
						|  | rope_theta=10_000, | 
					
						
						|  | max_position_embeddings=4096, | 
					
						
						|  | initializer_range=0.02, | 
					
						
						|  | norm_eps=1.0e-5, | 
					
						
						|  | use_cache=True, | 
					
						
						|  | bos_token_id=0, | 
					
						
						|  | eos_token_id=2, | 
					
						
						|  | tie_word_embeddings=False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | self.vocab_size = vocab_size | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  | self.intermediate_size = intermediate_size | 
					
						
						|  | self.hidden_size = hidden_size | 
					
						
						|  | self.num_hidden_layers = num_hidden_layers | 
					
						
						|  | self.num_attention_heads = num_attention_heads | 
					
						
						|  | self.num_key_value_heads = num_key_value_heads | 
					
						
						|  | self.hidden_act = hidden_act | 
					
						
						|  | self.rope_pct = rope_pct | 
					
						
						|  | self.rope_theta = rope_theta | 
					
						
						|  | self.initializer_range = initializer_range | 
					
						
						|  | self.norm_eps = norm_eps | 
					
						
						|  | self.use_cache = use_cache | 
					
						
						|  | self.tie_word_embeddings = tie_word_embeddings | 
					
						
						|  | super().__init__( | 
					
						
						|  | bos_token_id=bos_token_id, | 
					
						
						|  | eos_token_id=eos_token_id, | 
					
						
						|  | tie_word_embeddings=tie_word_embeddings, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  |