TheBloke commited on
Commit
5c6c509
·
1 Parent(s): 3d64d7a

Initial GPTQ model commit

Browse files
Files changed (1) hide show
  1. README.md +395 -0
README.md ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - starmpcc/Asclepius-Synthetic-Clinical-Notes
4
+ inference: false
5
+ language:
6
+ - en
7
+ license: other
8
+ model_creator: Junu Kim
9
+ model_link: https://huggingface.co/starmpcc/Asclepius-13B
10
+ model_name: Asclepius 13B
11
+ model_type: llama
12
+ pipeline_tag: text2text-generation
13
+ quantized_by: TheBloke
14
+ tags:
15
+ - medical
16
+ ---
17
+
18
+ <!-- header start -->
19
+ <!-- 200823 -->
20
+ <div style="width: auto; margin-left: auto; margin-right: auto">
21
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
22
+ </div>
23
+ <div style="display: flex; justify-content: space-between; width: 100%;">
24
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
25
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
26
+ </div>
27
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
28
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
29
+ </div>
30
+ </div>
31
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
32
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
33
+ <!-- header end -->
34
+
35
+ # Asclepius 13B - GPTQ
36
+ - Model creator: [Junu Kim](https://huggingface.co/starmpcc)
37
+ - Original model: [Asclepius 13B](https://huggingface.co/starmpcc/Asclepius-13B)
38
+
39
+ <!-- description start -->
40
+ ## Description
41
+
42
+ This repo contains GPTQ model files for [Junu Kim's Asclepius 13B](https://huggingface.co/starmpcc/Asclepius-13B).
43
+
44
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
45
+
46
+ <!-- description end -->
47
+ <!-- repositories-available start -->
48
+ ## Repositories available
49
+
50
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Asclepius-13B-GPTQ)
51
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Asclepius-13B-GGUF)
52
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Asclepius-13B-GGML)
53
+ * [Junu Kim's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/starmpcc/Asclepius-13B)
54
+ <!-- repositories-available end -->
55
+
56
+ <!-- prompt-template start -->
57
+ ## Prompt template: Asclepius
58
+
59
+ ```
60
+ You are an intelligent clinical languge model.
61
+ Below is a snippet of patient's discharge summary and a following instruction from healthcare professional.
62
+ Write a response that appropriately completes the instruction.
63
+ The response should provide the accurate answer to the instruction, while being concise.
64
+
65
+ [Discharge Summary Begin]
66
+ Notes go here
67
+ [Discharge Summary End]
68
+
69
+ [Instruction Begin]
70
+ {prompt}
71
+ [Instruction End]
72
+
73
+ ```
74
+
75
+ <!-- prompt-template end -->
76
+
77
+ <!-- README_GPTQ.md-provided-files start -->
78
+ ## Provided files and GPTQ parameters
79
+
80
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
81
+
82
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
83
+
84
+ All GPTQ files are made with AutoGPTQ.
85
+
86
+ <details>
87
+ <summary>Explanation of GPTQ parameters</summary>
88
+
89
+ - Bits: The bit size of the quantised model.
90
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
91
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
92
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
93
+ - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
94
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
95
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
96
+
97
+ </details>
98
+
99
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
100
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
101
+ | [main](https://huggingface.co/TheBloke/Asclepius-13B-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 2048 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
102
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Asclepius-13B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 2048 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
103
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Asclepius-13B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 2048 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
104
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Asclepius-13B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Medical Meadow WikiDoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc) | 2048 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
105
+
106
+ <!-- README_GPTQ.md-provided-files end -->
107
+
108
+ <!-- README_GPTQ.md-download-from-branches start -->
109
+ ## How to download from branches
110
+
111
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Asclepius-13B-GPTQ:gptq-4bit-32g-actorder_True`
112
+ - With Git, you can clone a branch with:
113
+ ```
114
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Asclepius-13B-GPTQ
115
+ ```
116
+ - In Python Transformers code, the branch is the `revision` parameter; see below.
117
+ <!-- README_GPTQ.md-download-from-branches end -->
118
+ <!-- README_GPTQ.md-text-generation-webui start -->
119
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
120
+
121
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
122
+
123
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
124
+
125
+ 1. Click the **Model tab**.
126
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Asclepius-13B-GPTQ`.
127
+ - To download from a specific branch, enter for example `TheBloke/Asclepius-13B-GPTQ:gptq-4bit-32g-actorder_True`
128
+ - see Provided Files above for the list of branches for each option.
129
+ 3. Click **Download**.
130
+ 4. The model will start downloading. Once it's finished it will say "Done".
131
+ 5. In the top left, click the refresh icon next to **Model**.
132
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Asclepius-13B-GPTQ`
133
+ 7. The model will automatically load, and is now ready for use!
134
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
135
+ * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
136
+ 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
137
+ <!-- README_GPTQ.md-text-generation-webui end -->
138
+
139
+ <!-- README_GPTQ.md-use-from-python start -->
140
+ ## How to use this GPTQ model from Python code
141
+
142
+ ### Install the necessary packages
143
+
144
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
145
+
146
+ ```shell
147
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
148
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
149
+ ```
150
+
151
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
152
+
153
+ ```shell
154
+ pip3 uninstall -y auto-gptq
155
+ git clone https://github.com/PanQiWei/AutoGPTQ
156
+ cd AutoGPTQ
157
+ pip3 install .
158
+ ```
159
+
160
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
161
+
162
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
163
+ ```shell
164
+ pip3 uninstall -y transformers
165
+ pip3 install git+https://github.com/huggingface/transformers.git
166
+ ```
167
+
168
+ ### You can then use the following code
169
+
170
+ ```python
171
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
172
+
173
+ model_name_or_path = "TheBloke/Asclepius-13B-GPTQ"
174
+ # To use a different branch, change revision
175
+ # For example: revision="gptq-4bit-32g-actorder_True"
176
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
177
+ torch_dtype=torch.float16,
178
+ device_map="auto",
179
+ revision="main")
180
+
181
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
182
+
183
+ prompt = "Tell me about AI"
184
+ prompt_template=f'''You are an intelligent clinical languge model.
185
+ Below is a snippet of patient's discharge summary and a following instruction from healthcare professional.
186
+ Write a response that appropriately completes the instruction.
187
+ The response should provide the accurate answer to the instruction, while being concise.
188
+
189
+ [Discharge Summary Begin]
190
+ Notes go here
191
+ [Discharge Summary End]
192
+
193
+ [Instruction Begin]
194
+ {prompt}
195
+ [Instruction End]
196
+
197
+ '''
198
+
199
+ print("\n\n*** Generate:")
200
+
201
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
202
+ output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
203
+ print(tokenizer.decode(output[0]))
204
+
205
+ # Inference can also be done using transformers' pipeline
206
+
207
+ print("*** Pipeline:")
208
+ pipe = pipeline(
209
+ "text-generation",
210
+ model=model,
211
+ tokenizer=tokenizer,
212
+ max_new_tokens=512,
213
+ temperature=0.7,
214
+ top_p=0.95,
215
+ repetition_penalty=1.15
216
+ )
217
+
218
+ print(pipe(prompt_template)[0]['generated_text'])
219
+ ```
220
+ <!-- README_GPTQ.md-use-from-python end -->
221
+
222
+ <!-- README_GPTQ.md-compatibility start -->
223
+ ## Compatibility
224
+
225
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
226
+
227
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
228
+
229
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
230
+ <!-- README_GPTQ.md-compatibility end -->
231
+
232
+ <!-- footer start -->
233
+ <!-- 200823 -->
234
+ ## Discord
235
+
236
+ For further support, and discussions on these models and AI in general, join us at:
237
+
238
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
239
+
240
+ ## Thanks, and how to contribute.
241
+
242
+ Thanks to the [chirper.ai](https://chirper.ai) team!
243
+
244
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
245
+
246
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
247
+
248
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
249
+
250
+ * Patreon: https://patreon.com/TheBlokeAI
251
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
252
+
253
+ **Special thanks to**: Aemon Algiz.
254
+
255
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
256
+
257
+
258
+ Thank you to all my generous patrons and donaters!
259
+
260
+ And thank you again to a16z for their generous grant.
261
+
262
+ <!-- footer end -->
263
+
264
+ # Original model card: Junu Kim's Asclepius 13B
265
+
266
+ # Model Card for Model ID
267
+
268
+ <!-- Provide a quick summary of what the model is/does. -->
269
+
270
+ This is official model checkpoint for Asclepius-13B [arxiv](todo)
271
+ This model is the first publicly shareable clinical LLM, trained with synthetic data.
272
+
273
+ ## Model Details
274
+
275
+ ### Model Description
276
+
277
+ <!-- Provide a longer summary of what this model is. -->
278
+
279
+
280
+
281
+ - **Model type:** Clinical LLM (Large Language Model)
282
+ - **Language(s) (NLP):** English
283
+ - **License:** CC-BY-NC-SA 4.0
284
+ - **Finetuned from model [optional]:** LLaMA-13B
285
+
286
+ ### Model Sources [optional]
287
+
288
+ <!-- Provide the basic links for the model. -->
289
+
290
+ - **Repository:** https://github.com/starmpcc/Asclepius
291
+ - **Paper [optional]:** TODO Arxiv
292
+ - **Data:** https://huggingface.co/datasets/starmpcc/Asclepius-Synthetic-Clinical-Notes
293
+
294
+ ## Uses
295
+
296
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
297
+ This model can perform below 8 clinical NLP tasks, with clincal notes.
298
+ - Named Entity Recognition
299
+ - Abbreviation Expansion
300
+ - Relation Extraction
301
+ - Temporal Information Extraction
302
+ - Coreference Resolution
303
+ - Paraphrasing
304
+ - Summarization
305
+ - Question Answering
306
+
307
+ ### Direct Use
308
+
309
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
310
+
311
+ [More Information Needed]
312
+
313
+ ### Downstream Use [optional]
314
+
315
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
316
+
317
+ [More Information Needed]
318
+
319
+ ### Out-of-Scope Use
320
+
321
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
322
+
323
+ ONLY USE THIS MODEL FOR RESEARCH PURPOSE!!
324
+
325
+ ## How to Get Started with the Model
326
+
327
+ ```python
328
+ prompt = """You are an intelligent clinical languge model.
329
+ Below is a snippet of patient's discharge summary and a following instruction from healthcare professional.
330
+ Write a response that appropriately completes the instruction.
331
+ The response should provide the accurate answer to the instruction, while being concise.
332
+
333
+ [Discharge Summary Begin]
334
+ {note}
335
+ [Discharge Summary End]
336
+
337
+ [Instruction Begin]
338
+ {question}
339
+ [Instruction End]
340
+ """
341
+
342
+ from transformers import AutoTokenizer, AutoModel
343
+ tokenizer = AutoTokenizer.from_pretrained("starmpcc/Asclepius-13B")
344
+ model = AutoModel.from_pretrained("starmpcc/Asclepius-13B")
345
+
346
+ note = "This is a sample note"
347
+ question = "What is the diagnosis?"
348
+
349
+ model_input = prompt.format(note=note, question=question)
350
+ input_ids = tokenizer(model_input, return_tensors="pt").input_ids
351
+ output = model.generate(input_ids)
352
+ print(tokenizer.decode(output[0]))
353
+ ```
354
+
355
+ ## Training Details
356
+
357
+ ### Training Data
358
+
359
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
360
+
361
+ https://huggingface.co/datasets/starmpcc/Asclepius-Synthetic-Clinical-Notes
362
+
363
+ ### Training Procedure
364
+
365
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
366
+ - Initial training was conducted using causal language modeling on synthetic clinical notes.
367
+ - It was then fine-tuned with clinical instruction-response pairs.
368
+ - For a comprehensive overview of our methods, our upcoming paper will serve as a resource.
369
+
370
+ #### Training Hyperparameters
371
+
372
+ - We followed config used in [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca)
373
+ -
374
+ #### Speeds, Sizes, Times [optional]
375
+
376
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
377
+ - Pre-Training (1 epoch): 1h 52m with 8x A100 80G
378
+ - Instruction Fine-Tuning (3 epoch): 12h 16m with 8x A100 80G
379
+
380
+
381
+
382
+ ## Citation [optional]
383
+
384
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
385
+
386
+ **BibTeX:**
387
+
388
+ [More Information Needed]
389
+
390
+ **APA:**
391
+
392
+ [More Information Needed]
393
+
394
+
395
+