TheBloke commited on
Commit
569a7a2
·
1 Parent(s): 45f1a95

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -55
README.md CHANGED
@@ -3,7 +3,7 @@ inference: false
3
  language:
4
  - en
5
  library_name: transformers
6
- license: other
7
  model_creator: Doctor Shotgun
8
  model_link: https://huggingface.co/Doctor-Shotgun/Chronohermes-Grad-L2-13b
9
  model_name: Chronohermes Grad L2 13B
@@ -36,18 +36,24 @@ tags:
36
  - Model creator: [Doctor Shotgun](https://huggingface.co/Doctor-Shotgun)
37
  - Original model: [Chronohermes Grad L2 13B](https://huggingface.co/Doctor-Shotgun/Chronohermes-Grad-L2-13b)
38
 
 
39
  ## Description
40
 
41
  This repo contains GPTQ model files for [Doctor Shotgun's Chronohermes Grad L2 13B](https://huggingface.co/Doctor-Shotgun/Chronohermes-Grad-L2-13b).
42
 
43
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
44
 
 
 
45
  ## Repositories available
46
 
47
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GPTQ)
48
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GGML)
 
49
  * [Doctor Shotgun's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Doctor-Shotgun/Chronohermes-Grad-L2-13b)
 
50
 
 
51
  ## Prompt template: Alpaca
52
 
53
  ```
@@ -57,22 +63,26 @@ Below is an instruction that describes a task. Write a response that appropriate
57
  {prompt}
58
 
59
  ### Response:
 
60
  ```
61
 
 
 
 
62
  ## Provided files and GPTQ parameters
63
 
64
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
65
 
66
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
67
 
68
- All GPTQ files are made with AutoGPTQ.
69
 
70
  <details>
71
  <summary>Explanation of GPTQ parameters</summary>
72
 
73
  - Bits: The bit size of the quantised model.
74
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
75
- - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
76
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
77
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
78
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
@@ -82,15 +92,18 @@ All GPTQ files are made with AutoGPTQ.
82
 
83
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
84
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
85
- | [main](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
86
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
87
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
88
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
89
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
90
- | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
91
- | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
92
- | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.95 GB | No | 8-bit, with group size 64g and Act Order for maximum inference quality. Poor AutoGPTQ CUDA speed. |
93
-
 
 
 
94
  ## How to download from branches
95
 
96
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Chronohermes-Grad-L2-13B-GPTQ:gptq-4bit-32g-actorder_True`
@@ -99,73 +112,72 @@ All GPTQ files are made with AutoGPTQ.
99
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GPTQ
100
  ```
101
  - In Python Transformers code, the branch is the `revision` parameter; see below.
102
-
 
103
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
104
 
105
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
106
 
107
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
108
 
109
  1. Click the **Model tab**.
110
  2. Under **Download custom model or LoRA**, enter `TheBloke/Chronohermes-Grad-L2-13B-GPTQ`.
111
  - To download from a specific branch, enter for example `TheBloke/Chronohermes-Grad-L2-13B-GPTQ:gptq-4bit-32g-actorder_True`
112
  - see Provided Files above for the list of branches for each option.
113
  3. Click **Download**.
114
- 4. The model will start downloading. Once it's finished it will say "Done"
115
  5. In the top left, click the refresh icon next to **Model**.
116
  6. In the **Model** dropdown, choose the model you just downloaded: `Chronohermes-Grad-L2-13B-GPTQ`
117
  7. The model will automatically load, and is now ready for use!
118
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
119
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
120
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
121
 
 
122
  ## How to use this GPTQ model from Python code
123
 
124
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
125
 
126
- ```
127
- pip3 install auto-gptq
128
- ```
129
 
130
- If you have problems installing AutoGPTQ, please build from source instead:
 
 
131
  ```
 
 
 
 
132
  pip3 uninstall -y auto-gptq
133
  git clone https://github.com/PanQiWei/AutoGPTQ
134
  cd AutoGPTQ
135
  pip3 install .
136
  ```
137
 
138
- Then try the following example code:
 
 
 
 
 
 
 
 
139
 
140
  ```python
141
- from transformers import AutoTokenizer, pipeline, logging
142
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
143
 
144
  model_name_or_path = "TheBloke/Chronohermes-Grad-L2-13B-GPTQ"
145
-
146
- use_triton = False
 
 
 
 
147
 
148
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
149
 
150
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
151
- use_safetensors=True,
152
- trust_remote_code=False,
153
- device="cuda:0",
154
- use_triton=use_triton,
155
- quantize_config=None)
156
-
157
- """
158
- # To download from a specific branch, use the revision parameter, as in this example:
159
- # Note that `revision` requires AutoGPTQ 0.3.1 or later!
160
-
161
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
162
- revision="gptq-4bit-32g-actorder_True",
163
- use_safetensors=True,
164
- trust_remote_code=False,
165
- device="cuda:0",
166
- quantize_config=None)
167
- """
168
-
169
  prompt = "Tell me about AI"
170
  prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
171
 
@@ -173,6 +185,7 @@ prompt_template=f'''Below is an instruction that describes a task. Write a respo
173
  {prompt}
174
 
175
  ### Response:
 
176
  '''
177
 
178
  print("\n\n*** Generate:")
@@ -183,9 +196,6 @@ print(tokenizer.decode(output[0]))
183
 
184
  # Inference can also be done using transformers' pipeline
185
 
186
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
187
- logging.set_verbosity(logging.CRITICAL)
188
-
189
  print("*** Pipeline:")
190
  pipe = pipeline(
191
  "text-generation",
@@ -199,12 +209,17 @@ pipe = pipeline(
199
 
200
  print(pipe(prompt_template)[0]['generated_text'])
201
  ```
 
202
 
 
203
  ## Compatibility
204
 
205
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
206
 
207
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
 
 
208
 
209
  <!-- footer start -->
210
  <!-- 200823 -->
@@ -229,7 +244,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
229
 
230
  **Special thanks to**: Aemon Algiz.
231
 
232
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
233
 
234
 
235
  Thank you to all my generous patrons and donaters!
@@ -247,14 +262,17 @@ This is a Llama 2-based model consisting of a gradient merge between:
247
  - [Chronos 13b v2](https://huggingface.co/elinas/chronos-13b-v2)
248
  - [Nous Hermes Llama2 13b](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b)
249
 
 
 
 
 
 
250
  The merge was performed using [BlockMerge_Gradient](https://github.com/Gryphe/BlockMerge_Gradient) by Gryphe
251
 
252
  The intended objective was to combine NH2's superior instruction following capabilities with the creativity and response length of Chronos v2. Merge ratios used are identical to those used in [Chronoboros Grad](https://huggingface.co/kingbri/chronoboros-grad-l2-13B), with NH2 starting with a weight of 0.9 at the 1st layer and phasing out by the 25th layer. The method is illustrated in the image below, with green representing NH2 and blue representing Chronos v2:
253
 
254
  ![hermeboros-illustration](https://files.catbox.moe/18sjej.png)
255
 
256
- added_tokens.json was padded with dummy tokens to reach 32 added tokens in order to allow GGML conversion in llama.cpp without error due to vocab size mismatch.
257
-
258
  ## Usage:
259
 
260
  Intended to be prompted with the Alpaca instruction format of the base models:
@@ -269,7 +287,7 @@ Intended to be prompted with the Alpaca instruction format of the base models:
269
 
270
  ## Bias, Risks, and Limitations
271
 
272
- The model will show biases similar to those exhibited by the base models. It is not intended for supplying factual information or advice in any form.
273
 
274
  ## Training Details
275
 
 
3
  language:
4
  - en
5
  library_name: transformers
6
+ license: llama2
7
  model_creator: Doctor Shotgun
8
  model_link: https://huggingface.co/Doctor-Shotgun/Chronohermes-Grad-L2-13b
9
  model_name: Chronohermes Grad L2 13B
 
36
  - Model creator: [Doctor Shotgun](https://huggingface.co/Doctor-Shotgun)
37
  - Original model: [Chronohermes Grad L2 13B](https://huggingface.co/Doctor-Shotgun/Chronohermes-Grad-L2-13b)
38
 
39
+ <!-- description start -->
40
  ## Description
41
 
42
  This repo contains GPTQ model files for [Doctor Shotgun's Chronohermes Grad L2 13B](https://huggingface.co/Doctor-Shotgun/Chronohermes-Grad-L2-13b).
43
 
44
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
45
 
46
+ <!-- description end -->
47
+ <!-- repositories-available start -->
48
  ## Repositories available
49
 
50
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GPTQ)
51
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GGUF)
52
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GGML)
53
  * [Doctor Shotgun's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Doctor-Shotgun/Chronohermes-Grad-L2-13b)
54
+ <!-- repositories-available end -->
55
 
56
+ <!-- prompt-template start -->
57
  ## Prompt template: Alpaca
58
 
59
  ```
 
63
  {prompt}
64
 
65
  ### Response:
66
+
67
  ```
68
 
69
+ <!-- prompt-template end -->
70
+
71
+ <!-- README_GPTQ.md-provided-files start -->
72
  ## Provided files and GPTQ parameters
73
 
74
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
75
 
76
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
77
 
78
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
79
 
80
  <details>
81
  <summary>Explanation of GPTQ parameters</summary>
82
 
83
  - Bits: The bit size of the quantised model.
84
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
85
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
86
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
87
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
88
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
 
92
 
93
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
94
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
95
+ | [main](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
96
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
97
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
98
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
99
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
100
+ | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
101
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
102
+ | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.95 GB | No | 8-bit, with group size 64g and Act Order for even higher inference quality. Poor AutoGPTQ CUDA speed. |
103
+
104
+ <!-- README_GPTQ.md-provided-files end -->
105
+
106
+ <!-- README_GPTQ.md-download-from-branches start -->
107
  ## How to download from branches
108
 
109
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Chronohermes-Grad-L2-13B-GPTQ:gptq-4bit-32g-actorder_True`
 
112
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GPTQ
113
  ```
114
  - In Python Transformers code, the branch is the `revision` parameter; see below.
115
+ <!-- README_GPTQ.md-download-from-branches end -->
116
+ <!-- README_GPTQ.md-text-generation-webui start -->
117
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
118
 
119
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
120
 
121
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
122
 
123
  1. Click the **Model tab**.
124
  2. Under **Download custom model or LoRA**, enter `TheBloke/Chronohermes-Grad-L2-13B-GPTQ`.
125
  - To download from a specific branch, enter for example `TheBloke/Chronohermes-Grad-L2-13B-GPTQ:gptq-4bit-32g-actorder_True`
126
  - see Provided Files above for the list of branches for each option.
127
  3. Click **Download**.
128
+ 4. The model will start downloading. Once it's finished it will say "Done".
129
  5. In the top left, click the refresh icon next to **Model**.
130
  6. In the **Model** dropdown, choose the model you just downloaded: `Chronohermes-Grad-L2-13B-GPTQ`
131
  7. The model will automatically load, and is now ready for use!
132
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
133
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
134
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
135
+ <!-- README_GPTQ.md-text-generation-webui end -->
136
 
137
+ <!-- README_GPTQ.md-use-from-python start -->
138
  ## How to use this GPTQ model from Python code
139
 
140
+ ### Install the necessary packages
141
 
142
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
 
 
143
 
144
+ ```shell
145
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
146
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
147
  ```
148
+
149
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
150
+
151
+ ```shell
152
  pip3 uninstall -y auto-gptq
153
  git clone https://github.com/PanQiWei/AutoGPTQ
154
  cd AutoGPTQ
155
  pip3 install .
156
  ```
157
 
158
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
159
+
160
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
161
+ ```shell
162
+ pip3 uninstall -y transformers
163
+ pip3 install git+https://github.com/huggingface/transformers.git
164
+ ```
165
+
166
+ ### You can then use the following code
167
 
168
  ```python
169
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
170
 
171
  model_name_or_path = "TheBloke/Chronohermes-Grad-L2-13B-GPTQ"
172
+ # To use a different branch, change revision
173
+ # For example: revision="gptq-4bit-32g-actorder_True"
174
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
175
+ torch_dtype=torch.float16,
176
+ device_map="auto",
177
+ revision="main")
178
 
179
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
  prompt = "Tell me about AI"
182
  prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
183
 
 
185
  {prompt}
186
 
187
  ### Response:
188
+
189
  '''
190
 
191
  print("\n\n*** Generate:")
 
196
 
197
  # Inference can also be done using transformers' pipeline
198
 
 
 
 
199
  print("*** Pipeline:")
200
  pipe = pipeline(
201
  "text-generation",
 
209
 
210
  print(pipe(prompt_template)[0]['generated_text'])
211
  ```
212
+ <!-- README_GPTQ.md-use-from-python end -->
213
 
214
+ <!-- README_GPTQ.md-compatibility start -->
215
  ## Compatibility
216
 
217
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
218
 
219
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
220
+
221
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
222
+ <!-- README_GPTQ.md-compatibility end -->
223
 
224
  <!-- footer start -->
225
  <!-- 200823 -->
 
244
 
245
  **Special thanks to**: Aemon Algiz.
246
 
247
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
248
 
249
 
250
  Thank you to all my generous patrons and donaters!
 
262
  - [Chronos 13b v2](https://huggingface.co/elinas/chronos-13b-v2)
263
  - [Nous Hermes Llama2 13b](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b)
264
 
265
+ Quantized Models Provided by TheBloke (Thanks!):
266
+ - [GGML](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GGML)
267
+ - [GPTQ](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GPTQ)
268
+
269
+
270
  The merge was performed using [BlockMerge_Gradient](https://github.com/Gryphe/BlockMerge_Gradient) by Gryphe
271
 
272
  The intended objective was to combine NH2's superior instruction following capabilities with the creativity and response length of Chronos v2. Merge ratios used are identical to those used in [Chronoboros Grad](https://huggingface.co/kingbri/chronoboros-grad-l2-13B), with NH2 starting with a weight of 0.9 at the 1st layer and phasing out by the 25th layer. The method is illustrated in the image below, with green representing NH2 and blue representing Chronos v2:
273
 
274
  ![hermeboros-illustration](https://files.catbox.moe/18sjej.png)
275
 
 
 
276
  ## Usage:
277
 
278
  Intended to be prompted with the Alpaca instruction format of the base models:
 
287
 
288
  ## Bias, Risks, and Limitations
289
 
290
+ The model will show biases similar to those exhibited by the base models. It is not intended for supplying factual information or advice in any form.
291
 
292
  ## Training Details
293