Initial GPTQ model commit
Browse files- configuration_llama.py +176 -0
 
    	
        configuration_llama.py
    ADDED
    
    | 
         @@ -0,0 +1,176 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # coding=utf-8
         
     | 
| 2 | 
         
            +
            # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
         
     | 
| 3 | 
         
            +
            #
         
     | 
| 4 | 
         
            +
            # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
         
     | 
| 5 | 
         
            +
            # and OPT implementations in this library. It has been modified from its
         
     | 
| 6 | 
         
            +
            # original forms to accommodate minor architectural differences compared
         
     | 
| 7 | 
         
            +
            # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 10 | 
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 11 | 
         
            +
            # You may obtain a copy of the License at
         
     | 
| 12 | 
         
            +
            #
         
     | 
| 13 | 
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 14 | 
         
            +
            #
         
     | 
| 15 | 
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 16 | 
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 17 | 
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 18 | 
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 19 | 
         
            +
            # limitations under the License.
         
     | 
| 20 | 
         
            +
            """ LLaMA model configuration"""
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            from transformers.configuration_utils import PretrainedConfig
         
     | 
| 23 | 
         
            +
            from transformers.utils import logging
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            logger = logging.get_logger(__name__)
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            class LlamaConfig(PretrainedConfig):
         
     | 
| 32 | 
         
            +
                r"""
         
     | 
| 33 | 
         
            +
                This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
         
     | 
| 34 | 
         
            +
                model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
         
     | 
| 35 | 
         
            +
                defaults will yield a similar configuration to that of the LLaMA-7B.
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
         
     | 
| 38 | 
         
            +
                documentation from [`PretrainedConfig`] for more information.
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                Args:
         
     | 
| 42 | 
         
            +
                    vocab_size (`int`, *optional*, defaults to 32000):
         
     | 
| 43 | 
         
            +
                        Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
         
     | 
| 44 | 
         
            +
                        `inputs_ids` passed when calling [`LlamaModel`]
         
     | 
| 45 | 
         
            +
                    hidden_size (`int`, *optional*, defaults to 4096):
         
     | 
| 46 | 
         
            +
                        Dimension of the hidden representations.
         
     | 
| 47 | 
         
            +
                    intermediate_size (`int`, *optional*, defaults to 11008):
         
     | 
| 48 | 
         
            +
                        Dimension of the MLP representations.
         
     | 
| 49 | 
         
            +
                    num_hidden_layers (`int`, *optional*, defaults to 32):
         
     | 
| 50 | 
         
            +
                        Number of hidden layers in the Transformer encoder.
         
     | 
| 51 | 
         
            +
                    num_attention_heads (`int`, *optional*, defaults to 32):
         
     | 
| 52 | 
         
            +
                        Number of attention heads for each attention layer in the Transformer encoder.
         
     | 
| 53 | 
         
            +
                    num_key_value_heads (`int`, *optional*):
         
     | 
| 54 | 
         
            +
                        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
         
     | 
| 55 | 
         
            +
                        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
         
     | 
| 56 | 
         
            +
                        `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
         
     | 
| 57 | 
         
            +
                        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
         
     | 
| 58 | 
         
            +
                        by meanpooling all the original heads within that group. For more details checkout [this
         
     | 
| 59 | 
         
            +
                        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
         
     | 
| 60 | 
         
            +
                        `num_attention_heads`.
         
     | 
| 61 | 
         
            +
                    pretraining_tp (`int`, *optional*, defaults to `1`):
         
     | 
| 62 | 
         
            +
                        Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
         
     | 
| 63 | 
         
            +
                        document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
         
     | 
| 64 | 
         
            +
                        necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
         
     | 
| 65 | 
         
            +
                        issue](https://github.com/pytorch/pytorch/issues/76232).
         
     | 
| 66 | 
         
            +
                    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
         
     | 
| 67 | 
         
            +
                        The non-linear activation function (function or string) in the decoder.
         
     | 
| 68 | 
         
            +
                    max_position_embeddings (`int`, *optional*, defaults to 2048):
         
     | 
| 69 | 
         
            +
                        The maximum sequence length that this model might ever be used with. Typically set this to something large
         
     | 
| 70 | 
         
            +
                        just in case (e.g., 512 or 1024 or 2048).
         
     | 
| 71 | 
         
            +
                    initializer_range (`float`, *optional*, defaults to 0.02):
         
     | 
| 72 | 
         
            +
                        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         
     | 
| 73 | 
         
            +
                    rms_norm_eps (`float`, *optional*, defaults to 1e-12):
         
     | 
| 74 | 
         
            +
                        The epsilon used by the rms normalization layers.
         
     | 
| 75 | 
         
            +
                    use_cache (`bool`, *optional*, defaults to `True`):
         
     | 
| 76 | 
         
            +
                        Whether or not the model should return the last key/values attentions (not used by all models). Only
         
     | 
| 77 | 
         
            +
                        relevant if `config.is_decoder=True`.
         
     | 
| 78 | 
         
            +
                    tie_word_embeddings(`bool`, *optional*, defaults to `False`):
         
     | 
| 79 | 
         
            +
                        Whether to tie weight embeddings
         
     | 
| 80 | 
         
            +
                    rope_scaling (`Dict`, *optional*):
         
     | 
| 81 | 
         
            +
                        Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
         
     | 
| 82 | 
         
            +
                        strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
         
     | 
| 83 | 
         
            +
                        is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
         
     | 
| 84 | 
         
            +
                        `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
         
     | 
| 85 | 
         
            +
                        these scaling strategies behave:
         
     | 
| 86 | 
         
            +
                        https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
         
     | 
| 87 | 
         
            +
                        experimental feature, subject to breaking API changes in future versions.
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
                    Example:
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                ```python
         
     | 
| 92 | 
         
            +
                >>> from transformers import LlamaModel, LlamaConfig
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
                >>> # Initializing a LLaMA llama-7b style configuration
         
     | 
| 95 | 
         
            +
                >>> configuration = LlamaConfig()
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
                >>> # Initializing a model from the llama-7b style configuration
         
     | 
| 98 | 
         
            +
                >>> model = LlamaModel(configuration)
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                >>> # Accessing the model configuration
         
     | 
| 101 | 
         
            +
                >>> configuration = model.config
         
     | 
| 102 | 
         
            +
                ```"""
         
     | 
| 103 | 
         
            +
                model_type = "llama"
         
     | 
| 104 | 
         
            +
                keys_to_ignore_at_inference = ["past_key_values"]
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                def __init__(
         
     | 
| 107 | 
         
            +
                    self,
         
     | 
| 108 | 
         
            +
                    vocab_size=32000,
         
     | 
| 109 | 
         
            +
                    hidden_size=4096,
         
     | 
| 110 | 
         
            +
                    intermediate_size=11008,
         
     | 
| 111 | 
         
            +
                    num_hidden_layers=32,
         
     | 
| 112 | 
         
            +
                    num_attention_heads=32,
         
     | 
| 113 | 
         
            +
                    num_key_value_heads=None,
         
     | 
| 114 | 
         
            +
                    hidden_act="silu",
         
     | 
| 115 | 
         
            +
                    max_position_embeddings=2048,
         
     | 
| 116 | 
         
            +
                    initializer_range=0.02,
         
     | 
| 117 | 
         
            +
                    rms_norm_eps=1e-6,
         
     | 
| 118 | 
         
            +
                    use_cache=True,
         
     | 
| 119 | 
         
            +
                    pad_token_id=None,
         
     | 
| 120 | 
         
            +
                    bos_token_id=1,
         
     | 
| 121 | 
         
            +
                    eos_token_id=2,
         
     | 
| 122 | 
         
            +
                    pretraining_tp=1,
         
     | 
| 123 | 
         
            +
                    tie_word_embeddings=False,
         
     | 
| 124 | 
         
            +
                    rope_scaling=None,
         
     | 
| 125 | 
         
            +
                    rope_theta=10000,
         
     | 
| 126 | 
         
            +
                    **kwargs,
         
     | 
| 127 | 
         
            +
                ):
         
     | 
| 128 | 
         
            +
                    self.vocab_size = vocab_size
         
     | 
| 129 | 
         
            +
                    self.max_position_embeddings = max_position_embeddings
         
     | 
| 130 | 
         
            +
                    self.hidden_size = hidden_size
         
     | 
| 131 | 
         
            +
                    self.intermediate_size = intermediate_size
         
     | 
| 132 | 
         
            +
                    self.num_hidden_layers = num_hidden_layers
         
     | 
| 133 | 
         
            +
                    self.num_attention_heads = num_attention_heads
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
                    # for backward compatibility
         
     | 
| 136 | 
         
            +
                    if num_key_value_heads is None:
         
     | 
| 137 | 
         
            +
                        num_key_value_heads = num_attention_heads
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                    self.num_key_value_heads = num_key_value_heads
         
     | 
| 140 | 
         
            +
                    self.hidden_act = hidden_act
         
     | 
| 141 | 
         
            +
                    self.initializer_range = initializer_range
         
     | 
| 142 | 
         
            +
                    self.rms_norm_eps = rms_norm_eps
         
     | 
| 143 | 
         
            +
                    self.pretraining_tp = pretraining_tp
         
     | 
| 144 | 
         
            +
                    self.use_cache = use_cache
         
     | 
| 145 | 
         
            +
                    self.rope_scaling = rope_scaling
         
     | 
| 146 | 
         
            +
                    self._rope_scaling_validation()
         
     | 
| 147 | 
         
            +
                    self.rope_theta = rope_theta
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
                    super().__init__(
         
     | 
| 150 | 
         
            +
                        pad_token_id=pad_token_id,
         
     | 
| 151 | 
         
            +
                        bos_token_id=bos_token_id,
         
     | 
| 152 | 
         
            +
                        eos_token_id=eos_token_id,
         
     | 
| 153 | 
         
            +
                        tie_word_embeddings=tie_word_embeddings,
         
     | 
| 154 | 
         
            +
                        **kwargs,
         
     | 
| 155 | 
         
            +
                    )
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
                def _rope_scaling_validation(self):
         
     | 
| 158 | 
         
            +
                    """
         
     | 
| 159 | 
         
            +
                    Validate the `rope_scaling` configuration.
         
     | 
| 160 | 
         
            +
                    """
         
     | 
| 161 | 
         
            +
                    if self.rope_scaling is None:
         
     | 
| 162 | 
         
            +
                        return
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
                    if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
         
     | 
| 165 | 
         
            +
                        raise ValueError(
         
     | 
| 166 | 
         
            +
                            "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
         
     | 
| 167 | 
         
            +
                            f"got {self.rope_scaling}"
         
     | 
| 168 | 
         
            +
                        )
         
     | 
| 169 | 
         
            +
                    rope_scaling_type = self.rope_scaling.get("type", None)
         
     | 
| 170 | 
         
            +
                    rope_scaling_factor = self.rope_scaling.get("factor", None)
         
     | 
| 171 | 
         
            +
                    if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
         
     | 
| 172 | 
         
            +
                        raise ValueError(
         
     | 
| 173 | 
         
            +
                            f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
         
     | 
| 174 | 
         
            +
                        )
         
     | 
| 175 | 
         
            +
                    if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
         
     | 
| 176 | 
         
            +
                        raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
         
     |