TheBloke commited on
Commit
75800d4
·
1 Parent(s): fa38c30

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +447 -0
README.md ADDED
@@ -0,0 +1,447 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Doctor-Shotgun/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss
3
+ datasets:
4
+ - lemonilia/LimaRP
5
+ inference: false
6
+ language:
7
+ - en
8
+ library_name: transformers
9
+ license: apache-2.0
10
+ model_creator: Doctor Shotgun
11
+ model_name: Mixtral 8X7B Instruct v0.1 LimaRP ZLoss
12
+ model_type: mixtral
13
+ pipeline_tag: text-generation
14
+ prompt_template: '### Instruction:
15
+
16
+ {system_message}
17
+
18
+
19
+ ### Input:
20
+
21
+ {prompt}
22
+
23
+
24
+ ### Response:
25
+
26
+ '
27
+ quantized_by: TheBloke
28
+ tags:
29
+ - mixtral
30
+ ---
31
+ <!-- markdownlint-disable MD041 -->
32
+
33
+ <!-- header start -->
34
+ <!-- 200823 -->
35
+ <div style="width: auto; margin-left: auto; margin-right: auto">
36
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
37
+ </div>
38
+ <div style="display: flex; justify-content: space-between; width: 100%;">
39
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
40
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
41
+ </div>
42
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
43
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
44
+ </div>
45
+ </div>
46
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
47
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
48
+ <!-- header end -->
49
+
50
+ # Mixtral 8X7B Instruct v0.1 LimaRP ZLoss - AWQ
51
+ - Model creator: [Doctor Shotgun](https://huggingface.co/Doctor-Shotgun)
52
+ - Original model: [Mixtral 8X7B Instruct v0.1 LimaRP ZLoss](https://huggingface.co/Doctor-Shotgun/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss)
53
+
54
+ <!-- description start -->
55
+ ## Description
56
+
57
+ This repo contains AWQ model files for [Doctor Shotgun's Mixtral 8X7B Instruct v0.1 LimaRP ZLoss](https://huggingface.co/Doctor-Shotgun/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss).
58
+
59
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
60
+
61
+
62
+ **MIXTRAL AWQ**
63
+
64
+ This is a Mixtral AWQ model.
65
+
66
+ For AutoAWQ inference, please install AutoAWQ 0.1.8 or later.
67
+
68
+ Support via Transformers is also available, but currently requires installing Transformers from Github: `pip3 install git+https://github.com/huggingface/transformers.git`
69
+
70
+ vLLM: version 0.2.6 is confirmed to support Mixtral AWQs.
71
+
72
+ TGI: I tested version 1.3.3 and it loaded the model fine, but I was not able to get any output back. Further testing/debug is required. (Let me know if you get it working!)
73
+
74
+ ### About AWQ
75
+
76
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
77
+
78
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
79
+
80
+ AWQ models are supported by (note that not all of these may support Mixtral models yet - see above):
81
+
82
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
83
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
84
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
85
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
86
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
87
+
88
+ <!-- description end -->
89
+ <!-- repositories-available start -->
90
+ ## Repositories available
91
+
92
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-AWQ)
93
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-GPTQ)
94
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-GGUF)
95
+ * [Doctor Shotgun's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Doctor-Shotgun/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss)
96
+ <!-- repositories-available end -->
97
+
98
+ <!-- prompt-template start -->
99
+ ## Prompt template: Instruction-Input-Response
100
+
101
+ ```
102
+ ### Instruction:
103
+ {system_message}
104
+
105
+ ### Input:
106
+ {prompt}
107
+
108
+ ### Response:
109
+
110
+ ```
111
+
112
+ <!-- prompt-template end -->
113
+
114
+
115
+ <!-- README_AWQ.md-provided-files start -->
116
+ ## Provided files, and AWQ parameters
117
+
118
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
119
+
120
+ Models are released as sharded safetensors files.
121
+
122
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
123
+ | ------ | ---- | -- | ----------- | ------- | ---- |
124
+ | [main](https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 24.65 GB
125
+
126
+ <!-- README_AWQ.md-provided-files end -->
127
+
128
+ <!-- README_AWQ.md-text-generation-webui start -->
129
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
130
+
131
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
132
+
133
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
134
+
135
+ 1. Click the **Model tab**.
136
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-AWQ`.
137
+ 3. Click **Download**.
138
+ 4. The model will start downloading. Once it's finished it will say "Done".
139
+ 5. In the top left, click the refresh icon next to **Model**.
140
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-AWQ`
141
+ 7. Select **Loader: AutoAWQ**.
142
+ 8. Click Load, and the model will load and is now ready for use.
143
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
144
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
145
+ <!-- README_AWQ.md-text-generation-webui end -->
146
+
147
+ <!-- README_AWQ.md-use-from-vllm start -->
148
+ ## Multi-user inference server: vLLM
149
+
150
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
151
+
152
+ - Please ensure you are using vLLM version 0.2 or later.
153
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
154
+
155
+ For example:
156
+
157
+ ```shell
158
+ python3 -m vllm.entrypoints.api_server --model TheBloke/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-AWQ --quantization awq --dtype auto
159
+ ```
160
+
161
+ - When using vLLM from Python code, again set `quantization=awq`.
162
+
163
+ For example:
164
+
165
+ ```python
166
+ from vllm import LLM, SamplingParams
167
+
168
+ prompts = [
169
+ "Tell me about AI",
170
+ "Write a story about llamas",
171
+ "What is 291 - 150?",
172
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
173
+ ]
174
+ prompt_template=f'''### Instruction:
175
+ {system_message}
176
+
177
+ ### Input:
178
+ {prompt}
179
+
180
+ ### Response:
181
+ '''
182
+
183
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
184
+
185
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
186
+
187
+ llm = LLM(model="TheBloke/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-AWQ", quantization="awq", dtype="auto")
188
+
189
+ outputs = llm.generate(prompts, sampling_params)
190
+
191
+ # Print the outputs.
192
+ for output in outputs:
193
+ prompt = output.prompt
194
+ generated_text = output.outputs[0].text
195
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
196
+ ```
197
+ <!-- README_AWQ.md-use-from-vllm start -->
198
+
199
+ <!-- README_AWQ.md-use-from-tgi start -->
200
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
201
+
202
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
203
+
204
+ Example Docker parameters:
205
+
206
+ ```shell
207
+ --model-id TheBloke/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
208
+ ```
209
+
210
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
211
+
212
+ ```shell
213
+ pip3 install huggingface-hub
214
+ ```
215
+
216
+ ```python
217
+ from huggingface_hub import InferenceClient
218
+
219
+ endpoint_url = "https://your-endpoint-url-here"
220
+
221
+ prompt = "Tell me about AI"
222
+ prompt_template=f'''### Instruction:
223
+ {system_message}
224
+
225
+ ### Input:
226
+ {prompt}
227
+
228
+ ### Response:
229
+ '''
230
+
231
+ client = InferenceClient(endpoint_url)
232
+ response = client.text_generation(prompt,
233
+ max_new_tokens=128,
234
+ do_sample=True,
235
+ temperature=0.7,
236
+ top_p=0.95,
237
+ top_k=40,
238
+ repetition_penalty=1.1)
239
+
240
+ print(f"Model output: ", response)
241
+ ```
242
+ <!-- README_AWQ.md-use-from-tgi end -->
243
+
244
+ <!-- README_AWQ.md-use-from-python start -->
245
+ ## Inference from Python code using Transformers
246
+
247
+ ### Install the necessary packages
248
+
249
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
250
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
251
+
252
+ ```shell
253
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
254
+ ```
255
+
256
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
257
+
258
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
259
+
260
+ ```shell
261
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
262
+ ```
263
+
264
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
265
+
266
+ ```shell
267
+ pip3 uninstall -y autoawq
268
+ git clone https://github.com/casper-hansen/AutoAWQ
269
+ cd AutoAWQ
270
+ pip3 install .
271
+ ```
272
+
273
+ ### Transformers example code (requires Transformers 4.35.0 and later)
274
+
275
+ ```python
276
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
277
+
278
+ model_name_or_path = "TheBloke/Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss-AWQ"
279
+
280
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
281
+ model = AutoModelForCausalLM.from_pretrained(
282
+ model_name_or_path,
283
+ low_cpu_mem_usage=True,
284
+ device_map="cuda:0"
285
+ )
286
+
287
+ # Using the text streamer to stream output one token at a time
288
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
289
+
290
+ prompt = "Tell me about AI"
291
+ prompt_template=f'''### Instruction:
292
+ {system_message}
293
+
294
+ ### Input:
295
+ {prompt}
296
+
297
+ ### Response:
298
+ '''
299
+
300
+ # Convert prompt to tokens
301
+ tokens = tokenizer(
302
+ prompt_template,
303
+ return_tensors='pt'
304
+ ).input_ids.cuda()
305
+
306
+ generation_params = {
307
+ "do_sample": True,
308
+ "temperature": 0.7,
309
+ "top_p": 0.95,
310
+ "top_k": 40,
311
+ "max_new_tokens": 512,
312
+ "repetition_penalty": 1.1
313
+ }
314
+
315
+ # Generate streamed output, visible one token at a time
316
+ generation_output = model.generate(
317
+ tokens,
318
+ streamer=streamer,
319
+ **generation_params
320
+ )
321
+
322
+ # Generation without a streamer, which will include the prompt in the output
323
+ generation_output = model.generate(
324
+ tokens,
325
+ **generation_params
326
+ )
327
+
328
+ # Get the tokens from the output, decode them, print them
329
+ token_output = generation_output[0]
330
+ text_output = tokenizer.decode(token_output)
331
+ print("model.generate output: ", text_output)
332
+
333
+ # Inference is also possible via Transformers' pipeline
334
+ from transformers import pipeline
335
+
336
+ pipe = pipeline(
337
+ "text-generation",
338
+ model=model,
339
+ tokenizer=tokenizer,
340
+ **generation_params
341
+ )
342
+
343
+ pipe_output = pipe(prompt_template)[0]['generated_text']
344
+ print("pipeline output: ", pipe_output)
345
+
346
+ ```
347
+ <!-- README_AWQ.md-use-from-python end -->
348
+
349
+ <!-- README_AWQ.md-compatibility start -->
350
+ ## Compatibility
351
+
352
+ The files provided are tested to work with:
353
+
354
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
355
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
356
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
357
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
358
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
359
+
360
+ <!-- README_AWQ.md-compatibility end -->
361
+
362
+ <!-- footer start -->
363
+ <!-- 200823 -->
364
+ ## Discord
365
+
366
+ For further support, and discussions on these models and AI in general, join us at:
367
+
368
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
369
+
370
+ ## Thanks, and how to contribute
371
+
372
+ Thanks to the [chirper.ai](https://chirper.ai) team!
373
+
374
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
375
+
376
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
377
+
378
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
379
+
380
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
381
+
382
+ * Patreon: https://patreon.com/TheBlokeAI
383
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
384
+
385
+ **Special thanks to**: Aemon Algiz.
386
+
387
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
388
+
389
+
390
+ Thank you to all my generous patrons and donaters!
391
+
392
+ And thank you again to a16z for their generous grant.
393
+
394
+ <!-- footer end -->
395
+
396
+ # Original model card: Doctor Shotgun's Mixtral 8X7B Instruct v0.1 LimaRP ZLoss
397
+
398
+
399
+ # Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss
400
+
401
+ Experimental model, using a limarp qlora trained at 10k ctx length (greater than size of the longest limarp sample when tokenized via mistral's tokenizer) on [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) using [Charles Goddard](https://huggingface.co/chargoddard)'s ZLoss and Megablocks-based fork of transformers, and then fused to [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) at 0.5 weight.
402
+
403
+ Would try with temp ~1.5-2 and min-p of ~0.03-0.05 since mixtral does appear to be highly confident on its responses and can enter repetition loops after several thousand tokens of responses.
404
+
405
+ [Peft Adapter](https://huggingface.co/Doctor-Shotgun/limarp-zloss-mixtral-8x7b-qlora)
406
+
407
+ ## Usage:
408
+ The intended prompt format is the Alpaca instruction format of LimaRP v3:
409
+ ```
410
+ ### Instruction:
411
+ Character's Persona: {bot character description}
412
+
413
+ User's Persona: {user character description}
414
+
415
+ Scenario: {what happens in the story}
416
+
417
+ Play the role of Character. Taking the above information into consideration, you must engage in a roleplaying chat with User below this line. Do not write dialogues and narration for User.
418
+
419
+ ### Input:
420
+ User: {utterance}
421
+
422
+ ### Response:
423
+ Character: {utterance}
424
+
425
+ ### Input:
426
+ User: {utterance}
427
+
428
+ ### Response:
429
+ Character: {utterance}
430
+
431
+ (etc.)
432
+ ```
433
+
434
+ ## Message length control
435
+ Due to the inclusion of LimaRP v3, it is possible to append a length modifier to the response instruction sequence, like this:
436
+ ```
437
+ ### Input
438
+ User: {utterance}
439
+
440
+ ### Response: (length = medium)
441
+ Character: {utterance}
442
+ ```
443
+ This has an immediately noticeable effect on bot responses. The available lengths are: `micro, tiny, short, medium, long, massive, huge, enormous, humongous, unlimited`. The recommended starting length is `medium`. Keep in mind that the AI may ramble or impersonate the user with very long messages.
444
+ ## Bias, Risks, and Limitations
445
+ The model will show biases similar to those observed in niche roleplaying forums on the Internet, besides those exhibited by the base model. It is not intended for supplying factual information or advice in any form.
446
+ ## Training Details
447
+ This model is a merge. Please refer to the link repositories of the merged models for details.