TheBloke commited on
Commit
e062fd6
·
1 Parent(s): 29cf2c7

Initial GPTQ model commit

Browse files
Files changed (1) hide show
  1. README.md +374 -0
README.md ADDED
@@ -0,0 +1,374 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - ehartford/dolphin
4
+ - shahules786/orca-chat
5
+ - togethercomputer/RedPajama-Data-1T
6
+ - atom-in-the-universe/fanfics-10k-50k
7
+ inference: false
8
+ language:
9
+ - en
10
+ license: other
11
+ model_creator: OpenAssistant
12
+ model_link: https://huggingface.co/OpenAssistant/llama2-13b-orca-8k-3319
13
+ model_name: Llama2 13B Orca 8K 3319
14
+ model_type: llama
15
+ pipeline_tag: text-generation
16
+ quantized_by: TheBloke
17
+ tags:
18
+ - sft
19
+ widget:
20
+ - text: <|system|>You are an AI assistant. You will be given a task. You must generate
21
+ a detailed and long answer.</s><|prompter|>What is a meme, and what's the history
22
+ behind this word?</s><|assistant|>
23
+ - text: <|system|>You are an AI assistant that helps people find information.</s><|prompter|>What's
24
+ the Earth total population</s><|assistant|>
25
+ - text: <|system|>You are an AI assistant that follows instruction extremely well.
26
+ Help as much as you can.</s><|prompter|>Write a story about future of AI development</s><|assistant|>
27
+ ---
28
+
29
+ <!-- header start -->
30
+ <div style="width: 100%;">
31
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
32
+ </div>
33
+ <div style="display: flex; justify-content: space-between; width: 100%;">
34
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
35
+ <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
36
+ </div>
37
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
38
+ <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
39
+ </div>
40
+ </div>
41
+ <!-- header end -->
42
+
43
+ # Llama2 13B Orca 8K 3319 - GPTQ
44
+ - Model creator: [OpenAssistant](https://huggingface.co/OpenAssistant)
45
+ - Original model: [Llama2 13B Orca 8K 3319](https://huggingface.co/OpenAssistant/llama2-13b-orca-8k-3319)
46
+
47
+ ## Description
48
+
49
+ This repo contains GPTQ model files for [OpenAssistant's Llama2 13B Orca 8K 3319](https://huggingface.co/OpenAssistant/llama2-13b-orca-8k-3319).
50
+
51
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
52
+
53
+ ## Repositories available
54
+
55
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ)
56
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GGML)
57
+ * [OpenAssistant's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/OpenAssistant/llama2-13b-orca-8k-3319)
58
+
59
+ ## Prompt template: OpenAssistant-System
60
+
61
+ ```
62
+ <|system|>{system_message}</s><|prompter|>{prompt}</s><|assistant|>
63
+ ```
64
+
65
+ ## Provided files
66
+
67
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
68
+
69
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
70
+
71
+ | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
72
+ | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
73
+ | main | 4 | 128 | False | 7.26 GB | True | AutoGPTQ | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
74
+ | gptq-4bit-32g-actorder_True | 4 | 32 | True | 8.00 GB | True | AutoGPTQ | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
75
+ | gptq-4bit-64g-actorder_True | 4 | 64 | True | 7.51 GB | True | AutoGPTQ | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
76
+ | gptq-4bit-128g-actorder_True | 4 | 128 | True | 7.26 GB | True | AutoGPTQ | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
77
+ | gptq-8bit--1g-actorder_True | 8 | None | True | Processing, coming soon | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
78
+ | gptq-8bit-128g-actorder_False | 8 | 128 | False | Processing, coming soon | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
79
+ | gptq-8bit-128g-actorder_True | 8 | 128 | True | Processing, coming soon | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
80
+ | gptq-8bit-64g-actorder_True | 8 | 64 | True | Processing, coming soon | False | AutoGPTQ | 8-bit, with group size 64g and Act Order for maximum inference quality. Poor AutoGPTQ CUDA speed. |
81
+
82
+ ## How to download from branches
83
+
84
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ:gptq-4bit-32g-actorder_True`
85
+ - With Git, you can clone a branch with:
86
+ ```
87
+ git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ`
88
+ ```
89
+ - In Python Transformers code, the branch is the `revision` parameter; see below.
90
+
91
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
92
+
93
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
94
+
95
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
96
+
97
+ 1. Click the **Model tab**.
98
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ`.
99
+ - To download from a specific branch, enter for example `TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ:gptq-4bit-32g-actorder_True`
100
+ - see Provided Files above for the list of branches for each option.
101
+ 3. Click **Download**.
102
+ 4. The model will start downloading. Once it's finished it will say "Done"
103
+ 5. In the top left, click the refresh icon next to **Model**.
104
+ 6. In the **Model** dropdown, choose the model you just downloaded: `OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ`
105
+ 7. The model will automatically load, and is now ready for use!
106
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
107
+ * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
108
+ 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
109
+
110
+ ## How to use this GPTQ model from Python code
111
+
112
+ First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
113
+
114
+ `GITHUB_ACTIONS=true pip install auto-gptq`
115
+
116
+ Then try the following example code:
117
+
118
+ ```python
119
+ from transformers import AutoTokenizer, pipeline, logging
120
+ from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
121
+
122
+ model_name_or_path = "TheBloke/OpenAssistant-Llama2-13B-Orca-8K-3319-GPTQ"
123
+ model_basename = "gptq_model-4bit-128g"
124
+
125
+ use_triton = False
126
+
127
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
128
+
129
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
130
+ model_basename=model_basename,
131
+ use_safetensors=True,
132
+ trust_remote_code=False,
133
+ device="cuda:0",
134
+ use_triton=use_triton,
135
+ quantize_config=None)
136
+
137
+ """
138
+ To download from a specific branch, use the revision parameter, as in this example:
139
+
140
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
141
+ revision="gptq-4bit-32g-actorder_True",
142
+ model_basename=model_basename,
143
+ use_safetensors=True,
144
+ trust_remote_code=False,
145
+ device="cuda:0",
146
+ quantize_config=None)
147
+ """
148
+
149
+ prompt = "Tell me about AI"
150
+ prompt_template=f'''<|system|>{system_message}</s><|prompter|>{prompt}</s><|assistant|>
151
+ '''
152
+
153
+ print("\n\n*** Generate:")
154
+
155
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
156
+ output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
157
+ print(tokenizer.decode(output[0]))
158
+
159
+ # Inference can also be done using transformers' pipeline
160
+
161
+ # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
162
+ logging.set_verbosity(logging.CRITICAL)
163
+
164
+ print("*** Pipeline:")
165
+ pipe = pipeline(
166
+ "text-generation",
167
+ model=model,
168
+ tokenizer=tokenizer,
169
+ max_new_tokens=512,
170
+ temperature=0.7,
171
+ top_p=0.95,
172
+ repetition_penalty=1.15
173
+ )
174
+
175
+ print(pipe(prompt_template)[0]['generated_text'])
176
+ ```
177
+
178
+ ## Compatibility
179
+
180
+ The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
181
+
182
+ ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
183
+
184
+ <!-- footer start -->
185
+ ## Discord
186
+
187
+ For further support, and discussions on these models and AI in general, join us at:
188
+
189
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
190
+
191
+ ## Thanks, and how to contribute.
192
+
193
+ Thanks to the [chirper.ai](https://chirper.ai) team!
194
+
195
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
196
+
197
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
198
+
199
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
200
+
201
+ * Patreon: https://patreon.com/TheBlokeAI
202
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
203
+
204
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
205
+
206
+ **Patreon special mentions**: Slarti, Chadd, John Detwiler, Pieter, zynix, K, Mano Prime, ReadyPlayerEmma, Ai Maven, Leonard Tan, Edmond Seymore, Joseph William Delisle, Luke @flexchar, Fred von Graf, Viktor Bowallius, Rishabh Srivastava, Nikolai Manek, Matthew Berman, Johann-Peter Hartmann, ya boyyy, Greatston Gnanesh, Femi Adebogun, Talal Aujan, Jonathan Leane, terasurfer, David Flickinger, William Sang, Ajan Kanaga, Vadim, Artur Olbinski, Raven Klaugh, Michael Levine, Oscar Rangel, Randy H, Cory Kujawski, RoA, Dave, Alex, Alexandros Triantafyllidis, Fen Risland, Eugene Pentland, vamX, Elle, Nathan LeClaire, Khalefa Al-Ahmad, Rainer Wilmers, subjectnull, Junyu Yang, Daniel P. Andersen, SuperWojo, LangChain4j, Mandus, Kalila, Illia Dulskyi, Trenton Dambrowitz, Asp the Wyvern, Derek Yates, Jeffrey Morgan, Deep Realms, Imad Khwaja, Pyrater, Preetika Verma, biorpg, Gabriel Tamborski, Stephen Murray, Spiking Neurons AB, Iucharbius, Chris Smitley, Willem Michiel, Luke Pendergrass, Sebastain Graf, senxiiz, Will Dee, Space Cruiser, Karl Bernard, Clay Pascal, Lone Striker, transmissions 11, webtim, WelcomeToTheClub, Sam, theTransient, Pierre Kircher, chris gileta, John Villwock, Sean Connelly, Willian Hasse
207
+
208
+
209
+ Thank you to all my generous patrons and donaters!
210
+
211
+ <!-- footer end -->
212
+
213
+ # Original model card: OpenAssistant's Llama2 13B Orca 8K 3319
214
+
215
+ # llama2-13b-orca-8k-3319
216
+
217
+ ## Model Description
218
+
219
+ This model is a fine-tuning of Meta's Llama2 13B model with 8K context size on a long-conversation variant of the Dolphin dataset ([orca-chat](https://huggingface.co/datasets/shahules786/orca-chat)).
220
+
221
+ Note: **At least Huggingface Transformers [4.31.0](https://pypi.org/project/transformers/4.31.0/) is required to load this model!**
222
+
223
+
224
+ ## Usage
225
+
226
+ ```python
227
+ import torch
228
+ from transformers import AutoModelForCausalLM, AutoTokenizer
229
+
230
+ tokenizer = AutoTokenizer.from_pretrained("OpenAssistant/llama2-13b-orca-8k-3319", use_fast=False)
231
+ model = AutoModelForCausalLM.from_pretrained("OpenAssistant/llama2-13b-orca-8k-3319", torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto")
232
+
233
+ system_message = "You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."
234
+ user_prompt = "Write me a poem please"
235
+ prompt = f"""<|system|>{system_message}</s><|prompter|>{user_prompt}</s><|assistant|>"""
236
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
237
+ output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=256)
238
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
239
+ ```
240
+
241
+ ## Model Details
242
+
243
+ - base model: [meta-llama/Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b)
244
+ - License: [Llama 2 Community License Agreement](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
245
+ - sampling report: [2023-07-25_OpenAssistant_llama2-13b-orca-8k-3319_sampling_llama2_prompt.json](https://open-assistant.github.io/oasst-model-eval/?f=https%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Foasst-pretrained%2F2023-07-25_OpenAssistant_llama2-13b-orca-8k-3319_sampling_llama2_prompt.json)
246
+ - wandb: [public-sft/runs/2jfazjt9](https://wandb.ai/open-assistant/public-sft/runs/2jfazjt9)
247
+ - checkpoint: 3319 steps
248
+ - datatpye: fp16
249
+ - sponsored by: [Redmond.ai](https://redmond.ai/)
250
+
251
+ ## Long context (RoPE Scaling)
252
+
253
+ This model was fine-tuned with a context size of 8192 tokens using linear scaling of RoPE embeddings. This feature was recently
254
+ added to [Huggingface transformers](https://github.com/huggingface/transformers/). Before loading this model please make sure
255
+ HF transformers >=4.31.0 is installed (`pip install transformers>=4.31.0`).
256
+
257
+ ## Conversation Template
258
+
259
+ For the initial response use (e.g. the [llama2 default system prompt](https://github.com/facebookresearch/llama/blob/6c7fe276574e78057f917549435a2554000a876d/llama/generation.py#L46) works well):
260
+
261
+ ```
262
+ <|system|>system message</s><|prompter|>user prompt</s><|assistant|>
263
+ ```
264
+
265
+ For multi-turn conversations use:
266
+
267
+ ```
268
+ <|system|>system message</s><|prompter|>Q1</s><|assistant|>A1</s><|prompter|>Q2</s><|assistant|>
269
+ ```
270
+
271
+ The model was trained with the following 15 system messages used to generate the training examples (see [ORCA paper](https://arxiv.org/abs/2306.02707)):
272
+
273
+ 1. You are an AI assistant. Provide a detailed answer so user don’t need to search outside to understand the answer.
274
+ 2. You are an AI assistant. You will be given a task. You must generate a detailed and long answer.
275
+ 3. You are a helpful assistant, who always provide explanation. Think like you are answering to a five year old.
276
+ 4. You are an AI assistant that follows instruction extremely well. Help as much as you can.
277
+ 5. You are an AI assistant that helps people find information. Provide a detailed answer so user don’t need to search outside to understand the answer.
278
+ 6. You are an AI assistant. User will you give you a task. Your goal is to complete the task as faithfully as you can. While performing the task think step-by-step and justify your steps.
279
+ 7. You should describe the task and explain your answer. While answering a multiple choice question, first output the correct answer(s). Then explain why other answers are wrong. Think like you are answering to a five year old.
280
+ 8. Explain how you used the definition to come up with the answer.
281
+ 9. You are an AI assistant. You should describe the task and explain your answer. While answering a multiple choice question, first output the correct answer(s). Then explain why other answers are wrong. You might need to use additional knowledge to answer the question.
282
+ 10. You are an AI assistant that helps people find information. User will you give you a question. Your task is to answer as faithfully as you can. While answering think step-by- step and justify your answer.
283
+ 11. User will you give you a task with some instruction. Your job is follow the instructions as faithfully as you can. While answering think step-by-step and justify your answer.
284
+ 12. You are a teacher. Given a task, you explain in simple steps what the task is asking, any guidelines it provides and how to use those guidelines to find the answer.
285
+ 13. You are an AI assistant, who knows every language and how to translate one language to another. Given a task, you explain in simple steps what the task is asking, any guidelines that it provides. You solve the task and show how you used the guidelines to solve the task.
286
+ 14. Given a definition of a task and a sample input, break the definition into small parts. Each of those parts will have some instruction. Explain their meaning by showing an example that meets the criteria in the instruction. Use the following format: Part \#: a key part of the definition. Usage: Sample response that meets the criteria from the key part. Explain why you think it meets the criteria.
287
+ 15. You are an AI assistant that helps people find information.
288
+
289
+
290
+ ## Datasets: Orca-Chat/Dolphin, RedPajama1T & FanFics
291
+
292
+ This model was trained on:
293
+
294
+ - [shahules786/orca-chat](https://huggingface.co/datasets/shahules786/orca-chat)
295
+ - [togethercomputer/RedPajama-Data-1T-Sample](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T)
296
+ - [atom-in-the-universe/fanfics-10k-50k](https://huggingface.co/datasets/atom-in-the-universe/fanfics-10k-50k)
297
+
298
+ ```
299
+ Dataset Composition:
300
+ Tain (sampled):
301
+ orca-chat: 188842 (100%)
302
+ fanfics: 47760 (100%)
303
+ red_pajama: 188262 (25%)
304
+ Valid:
305
+ orca-chat: 5000
306
+ fanfics: 1000
307
+ red_pajama: 1000
308
+ ```
309
+
310
+ The dataset [shahules786/orca-chat](https://huggingface.co/datasets/shahules786/orca-chat) combines similar examples of the GPT-4 subset of [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin) to form longer conversations
311
+ to improve long-context training.
312
+
313
+ Additionally, RedPajama and FanFics were used for classic language modelling as an auxiliary task to improve the RoPE scaling for the 8k context size.
314
+
315
+
316
+ ## Model Configuration
317
+ ```
318
+ llama2_13b_orca_8k:
319
+ rng_seed: 0xe1291f1a
320
+ use_custom_sampler: true
321
+ sort_by_length: false
322
+ dtype: fp16
323
+ log_dir: "llama2_log_13b_orca_8k"
324
+ learning_rate: 1e-5
325
+ model_name: /mnt/data/llama2/Llama-2-13b-hf/
326
+ output_dir: llama2_13b_orca_8k
327
+ deepspeed_config: configs/zero_config_pretrain.json
328
+ weight_decay: 0.0
329
+ max_length: 8192
330
+ warmup_steps: 100
331
+ use_flash_attention: true
332
+ gradient_checkpointing: true
333
+ gradient_accumulation_steps: 8
334
+ per_device_train_batch_size: 2
335
+ per_device_eval_batch_size: 1
336
+ residual_dropout: 0.0
337
+ eval_steps: 200
338
+ save_steps: 1000 # (total steps: 3319)
339
+ num_train_epochs: 1
340
+ save_total_limit: 4
341
+ superhot: true
342
+ superhot_config:
343
+ type: linear
344
+ scale: 2
345
+ datasets:
346
+ - orca-chat:
347
+ max_val_set: 5000
348
+ - fanfics:
349
+ max_chunk_size: 65535
350
+ max_val_set: 1000
351
+ - red_pajama:
352
+ fraction: 0.25
353
+ max_val_set: 1000
354
+ max_chunk_size: 65535
355
+ peft_model: false
356
+ ```
357
+
358
+ # Developers
359
+
360
+ - [shahules786](https://github.com/shahules786)
361
+ - [jordiclive](https://github.com/jordiclive)
362
+ - [andreaskoepf](https://github.com/andreaskoepf/)
363
+
364
+ # Special Thanks
365
+
366
+ We want to especially thank Eric Hartford who spared no expense in replicating ORCA and making it available at [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin)!
367
+ Also, shoutout to the whole team working on [LLongMA-2-13b](https://huggingface.co/conceptofmind/LLongMA-2-13b) & the [scaled-rope](https://github.com/jquesnelle/scaled-rope) repository for their awesome work: bloc97, jquesnelle & conceptofmind!
368
+
369
+ The whole Open-Assistant team is very grateful for the continued support of [Redmond.ai](https://redmond.ai/) who sponsored the training compute required for this model.
370
+
371
+ # License
372
+
373
+ - Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.
374
+ - Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the [Acceptable Use Policy](https://ai.meta.com/llama/use-policy) for the Llama Materials.