Text Generation
Transformers
Safetensors
llama
text-generation-inference
4-bit precision
gptq
TheBloke commited on
Commit
c4c0edd
·
1 Parent(s): 5c8549a

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -41
README.md CHANGED
@@ -1,4 +1,8 @@
1
  ---
 
 
 
 
2
  inference: false
3
  license: llama2
4
  model_creator: Kai Howard
@@ -29,19 +33,24 @@ quantized_by: TheBloke
29
  - Model creator: [Kai Howard](https://huggingface.co/totally-not-an-llm)
30
  - Original model: [PuddleJumper 13B](https://huggingface.co/totally-not-an-llm/PuddleJumper-13b)
31
 
 
32
  ## Description
33
 
34
  This repo contains GPTQ model files for [Kai Howard's PuddleJumper 13B](https://huggingface.co/totally-not-an-llm/PuddleJumper-13b).
35
 
36
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
37
 
 
 
38
  ## Repositories available
39
 
40
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/PuddleJumper-13B-GPTQ)
41
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF)
42
  * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/PuddleJumper-13B-GGML)
43
  * [Kai Howard's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/totally-not-an-llm/PuddleJumper-13b)
 
44
 
 
45
  ## Prompt template: Vicuna-Short
46
 
47
  ```
@@ -49,22 +58,26 @@ You are a helpful AI assistant.
49
 
50
  USER: {prompt}
51
  ASSISTANT:
 
52
  ```
53
 
 
 
 
54
  ## Provided files and GPTQ parameters
55
 
56
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
57
 
58
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
59
 
60
- All GPTQ files are made with AutoGPTQ.
61
 
62
  <details>
63
  <summary>Explanation of GPTQ parameters</summary>
64
 
65
  - Bits: The bit size of the quantised model.
66
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
67
- - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
68
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
69
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
70
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
@@ -81,6 +94,9 @@ All GPTQ files are made with AutoGPTQ.
81
  | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/PuddleJumper-13B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
82
  | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/PuddleJumper-13B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
83
 
 
 
 
84
  ## How to download from branches
85
 
86
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/PuddleJumper-13B-GPTQ:gptq-4bit-32g-actorder_True`
@@ -89,78 +105,78 @@ All GPTQ files are made with AutoGPTQ.
89
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/PuddleJumper-13B-GPTQ
90
  ```
91
  - In Python Transformers code, the branch is the `revision` parameter; see below.
92
-
 
93
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
94
 
95
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
96
 
97
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
98
 
99
  1. Click the **Model tab**.
100
  2. Under **Download custom model or LoRA**, enter `TheBloke/PuddleJumper-13B-GPTQ`.
101
  - To download from a specific branch, enter for example `TheBloke/PuddleJumper-13B-GPTQ:gptq-4bit-32g-actorder_True`
102
  - see Provided Files above for the list of branches for each option.
103
  3. Click **Download**.
104
- 4. The model will start downloading. Once it's finished it will say "Done"
105
  5. In the top left, click the refresh icon next to **Model**.
106
  6. In the **Model** dropdown, choose the model you just downloaded: `PuddleJumper-13B-GPTQ`
107
  7. The model will automatically load, and is now ready for use!
108
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
109
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
110
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
111
 
 
112
  ## How to use this GPTQ model from Python code
113
 
114
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
115
 
116
- ```
117
- pip3 install auto-gptq
118
- ```
119
 
120
- If you have problems installing AutoGPTQ, please build from source instead:
 
 
121
  ```
 
 
 
 
122
  pip3 uninstall -y auto-gptq
123
  git clone https://github.com/PanQiWei/AutoGPTQ
124
  cd AutoGPTQ
125
  pip3 install .
126
  ```
127
 
128
- Then try the following example code:
 
 
 
 
 
 
 
 
129
 
130
  ```python
131
- from transformers import AutoTokenizer, pipeline, logging
132
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
133
 
134
  model_name_or_path = "TheBloke/PuddleJumper-13B-GPTQ"
135
-
136
- use_triton = False
 
 
 
 
137
 
138
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
139
 
140
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
141
- use_safetensors=True,
142
- trust_remote_code=False,
143
- device="cuda:0",
144
- use_triton=use_triton,
145
- quantize_config=None)
146
-
147
- """
148
- # To download from a specific branch, use the revision parameter, as in this example:
149
- # Note that `revision` requires AutoGPTQ 0.3.1 or later!
150
-
151
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
152
- revision="gptq-4bit-32g-actorder_True",
153
- use_safetensors=True,
154
- trust_remote_code=False,
155
- device="cuda:0",
156
- quantize_config=None)
157
- """
158
-
159
  prompt = "Tell me about AI"
160
  prompt_template=f'''You are a helpful AI assistant.
161
 
162
  USER: {prompt}
163
  ASSISTANT:
 
164
  '''
165
 
166
  print("\n\n*** Generate:")
@@ -171,9 +187,6 @@ print(tokenizer.decode(output[0]))
171
 
172
  # Inference can also be done using transformers' pipeline
173
 
174
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
175
- logging.set_verbosity(logging.CRITICAL)
176
-
177
  print("*** Pipeline:")
178
  pipe = pipeline(
179
  "text-generation",
@@ -187,12 +200,17 @@ pipe = pipeline(
187
 
188
  print(pipe(prompt_template)[0]['generated_text'])
189
  ```
 
190
 
 
191
  ## Compatibility
192
 
193
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
194
 
195
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
 
 
196
 
197
  <!-- footer start -->
198
  <!-- 200823 -->
@@ -217,7 +235,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
217
 
218
  **Special thanks to**: Aemon Algiz.
219
 
220
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
221
 
222
 
223
  Thank you to all my generous patrons and donaters!
@@ -231,6 +249,14 @@ And thank you again to a16z for their generous grant.
231
 
232
  Merge of EverythingLM-V2-13b QLoRa and OpenOrca-Platypus2-13B.
233
 
 
 
 
 
 
 
 
 
234
  ### Prompt format:
235
 
236
  Many options:
 
1
  ---
2
+ datasets:
3
+ - totally-not-an-llm/EverythingLM-data-V2
4
+ - garage-bAInd/Open-Platypus
5
+ - Open-Orca/OpenOrca
6
  inference: false
7
  license: llama2
8
  model_creator: Kai Howard
 
33
  - Model creator: [Kai Howard](https://huggingface.co/totally-not-an-llm)
34
  - Original model: [PuddleJumper 13B](https://huggingface.co/totally-not-an-llm/PuddleJumper-13b)
35
 
36
+ <!-- description start -->
37
  ## Description
38
 
39
  This repo contains GPTQ model files for [Kai Howard's PuddleJumper 13B](https://huggingface.co/totally-not-an-llm/PuddleJumper-13b).
40
 
41
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
42
 
43
+ <!-- description end -->
44
+ <!-- repositories-available start -->
45
  ## Repositories available
46
 
47
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/PuddleJumper-13B-GPTQ)
48
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF)
49
  * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/PuddleJumper-13B-GGML)
50
  * [Kai Howard's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/totally-not-an-llm/PuddleJumper-13b)
51
+ <!-- repositories-available end -->
52
 
53
+ <!-- prompt-template start -->
54
  ## Prompt template: Vicuna-Short
55
 
56
  ```
 
58
 
59
  USER: {prompt}
60
  ASSISTANT:
61
+
62
  ```
63
 
64
+ <!-- prompt-template end -->
65
+
66
+ <!-- README_GPTQ.md-provided-files start -->
67
  ## Provided files and GPTQ parameters
68
 
69
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
70
 
71
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
72
 
73
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
74
 
75
  <details>
76
  <summary>Explanation of GPTQ parameters</summary>
77
 
78
  - Bits: The bit size of the quantised model.
79
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
80
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
81
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
82
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
83
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
 
94
  | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/PuddleJumper-13B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
95
  | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/PuddleJumper-13B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
96
 
97
+ <!-- README_GPTQ.md-provided-files end -->
98
+
99
+ <!-- README_GPTQ.md-download-from-branches start -->
100
  ## How to download from branches
101
 
102
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/PuddleJumper-13B-GPTQ:gptq-4bit-32g-actorder_True`
 
105
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/PuddleJumper-13B-GPTQ
106
  ```
107
  - In Python Transformers code, the branch is the `revision` parameter; see below.
108
+ <!-- README_GPTQ.md-download-from-branches end -->
109
+ <!-- README_GPTQ.md-text-generation-webui start -->
110
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
111
 
112
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
113
 
114
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
115
 
116
  1. Click the **Model tab**.
117
  2. Under **Download custom model or LoRA**, enter `TheBloke/PuddleJumper-13B-GPTQ`.
118
  - To download from a specific branch, enter for example `TheBloke/PuddleJumper-13B-GPTQ:gptq-4bit-32g-actorder_True`
119
  - see Provided Files above for the list of branches for each option.
120
  3. Click **Download**.
121
+ 4. The model will start downloading. Once it's finished it will say "Done".
122
  5. In the top left, click the refresh icon next to **Model**.
123
  6. In the **Model** dropdown, choose the model you just downloaded: `PuddleJumper-13B-GPTQ`
124
  7. The model will automatically load, and is now ready for use!
125
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
126
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
127
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
128
+ <!-- README_GPTQ.md-text-generation-webui end -->
129
 
130
+ <!-- README_GPTQ.md-use-from-python start -->
131
  ## How to use this GPTQ model from Python code
132
 
133
+ ### Install the necessary packages
134
 
135
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
 
 
136
 
137
+ ```shell
138
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
139
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
140
  ```
141
+
142
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
143
+
144
+ ```shell
145
  pip3 uninstall -y auto-gptq
146
  git clone https://github.com/PanQiWei/AutoGPTQ
147
  cd AutoGPTQ
148
  pip3 install .
149
  ```
150
 
151
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
152
+
153
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
154
+ ```shell
155
+ pip3 uninstall -y transformers
156
+ pip3 install git+https://github.com/huggingface/transformers.git
157
+ ```
158
+
159
+ ### You can then use the following code
160
 
161
  ```python
162
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
163
 
164
  model_name_or_path = "TheBloke/PuddleJumper-13B-GPTQ"
165
+ # To use a different branch, change revision
166
+ # For example: revision="gptq-4bit-32g-actorder_True"
167
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
168
+ torch_dtype=torch.float16,
169
+ device_map="auto",
170
+ revision="main")
171
 
172
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174
  prompt = "Tell me about AI"
175
  prompt_template=f'''You are a helpful AI assistant.
176
 
177
  USER: {prompt}
178
  ASSISTANT:
179
+
180
  '''
181
 
182
  print("\n\n*** Generate:")
 
187
 
188
  # Inference can also be done using transformers' pipeline
189
 
 
 
 
190
  print("*** Pipeline:")
191
  pipe = pipeline(
192
  "text-generation",
 
200
 
201
  print(pipe(prompt_template)[0]['generated_text'])
202
  ```
203
+ <!-- README_GPTQ.md-use-from-python end -->
204
 
205
+ <!-- README_GPTQ.md-compatibility start -->
206
  ## Compatibility
207
 
208
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
209
 
210
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
211
+
212
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
213
+ <!-- README_GPTQ.md-compatibility end -->
214
 
215
  <!-- footer start -->
216
  <!-- 200823 -->
 
235
 
236
  **Special thanks to**: Aemon Algiz.
237
 
238
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
239
 
240
 
241
  Thank you to all my generous patrons and donaters!
 
249
 
250
  Merge of EverythingLM-V2-13b QLoRa and OpenOrca-Platypus2-13B.
251
 
252
+ Quants (Thanks TheBloke)
253
+
254
+ https://huggingface.co/TheBloke/PuddleJumper-13B-GPTQ
255
+
256
+ https://huggingface.co/TheBloke/PuddleJumper-13B-GGML
257
+
258
+ https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF
259
+
260
  ### Prompt format:
261
 
262
  Many options: