TheBloke commited on
Commit
35287cb
1 Parent(s): f33a55f

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +429 -0
README.md ADDED
@@ -0,0 +1,429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ValiantLabs/ShiningValiant
3
+ inference: false
4
+ language:
5
+ - en
6
+ license: llama2
7
+ model_creator: Valiant Labs
8
+ model_name: ShiningValiant 1.3
9
+ model_type: llama
10
+ pipeline_tag: text-generation
11
+ prompt_template: '[INST] <<SYS>>
12
+
13
+ {system_message}
14
+
15
+ <</SYS>>
16
+
17
+ {prompt} [/INST]
18
+
19
+ '
20
+ quantized_by: TheBloke
21
+ tags:
22
+ - shining-valiant
23
+ - valiant
24
+ - valiant-labs
25
+ - llama
26
+ - llama-2
27
+ - llama-2-chat
28
+ - 70b
29
+ ---
30
+ <!-- markdownlint-disable MD041 -->
31
+
32
+ <!-- header start -->
33
+ <!-- 200823 -->
34
+ <div style="width: auto; margin-left: auto; margin-right: auto">
35
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
36
+ </div>
37
+ <div style="display: flex; justify-content: space-between; width: 100%;">
38
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
39
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
40
+ </div>
41
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
42
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
43
+ </div>
44
+ </div>
45
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
46
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
47
+ <!-- header end -->
48
+
49
+ # ShiningValiant 1.3 - GGUF
50
+ - Model creator: [Valiant Labs](https://huggingface.co/ValiantLabs)
51
+ - Original model: [ShiningValiant 1.3](https://huggingface.co/ValiantLabs/ShiningValiant)
52
+
53
+ <!-- description start -->
54
+ ## Description
55
+
56
+ This repo contains GGUF format model files for [Valiant Labs's ShiningValiant 1.3](https://huggingface.co/ValiantLabs/ShiningValiant).
57
+
58
+ <!-- description end -->
59
+ <!-- README_GGUF.md-about-gguf start -->
60
+ ### About GGUF
61
+
62
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
63
+
64
+ Here is an incomplete list of clients and libraries that are known to support GGUF:
65
+
66
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
67
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
68
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
69
+ * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
70
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
71
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
72
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
73
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
74
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
75
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
76
+
77
+ <!-- README_GGUF.md-about-gguf end -->
78
+ <!-- repositories-available start -->
79
+ ## Repositories available
80
+
81
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/ShiningValiant-1.3-AWQ)
82
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/ShiningValiant-1.3-GPTQ)
83
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/ShiningValiant-1.3-GGUF)
84
+ * [Valiant Labs's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ValiantLabs/ShiningValiant)
85
+ <!-- repositories-available end -->
86
+
87
+ <!-- prompt-template start -->
88
+ ## Prompt template: Llama-2-Chat
89
+
90
+ ```
91
+ [INST] <<SYS>>
92
+ {system_message}
93
+ <</SYS>>
94
+ {prompt} [/INST]
95
+
96
+ ```
97
+
98
+ <!-- prompt-template end -->
99
+
100
+
101
+ <!-- compatibility_gguf start -->
102
+ ## Compatibility
103
+
104
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
105
+
106
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
107
+
108
+ ## Explanation of quantisation methods
109
+
110
+ <details>
111
+ <summary>Click to see details</summary>
112
+
113
+ The new methods available are:
114
+
115
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
116
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
117
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
118
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
119
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
120
+
121
+ Refer to the Provided Files table below to see what files use which methods, and how.
122
+ </details>
123
+ <!-- compatibility_gguf end -->
124
+
125
+ <!-- README_GGUF.md-provided-files start -->
126
+ ## Provided files
127
+
128
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
129
+ | ---- | ---- | ---- | ---- | ---- | ----- |
130
+ | [shiningvaliant-1.2.Q2_K.gguf](https://huggingface.co/TheBloke/ShiningValiant-1.3-GGUF/blob/main/shiningvaliant-1.2.Q2_K.gguf) | Q2_K | 2 | 29.28 GB| 31.78 GB | smallest, significant quality loss - not recommended for most purposes |
131
+ | [shiningvaliant-1.2.Q3_K_S.gguf](https://huggingface.co/TheBloke/ShiningValiant-1.3-GGUF/blob/main/shiningvaliant-1.2.Q3_K_S.gguf) | Q3_K_S | 3 | 29.92 GB| 32.42 GB | very small, high quality loss |
132
+ | [shiningvaliant-1.2.Q3_K_M.gguf](https://huggingface.co/TheBloke/ShiningValiant-1.3-GGUF/blob/main/shiningvaliant-1.2.Q3_K_M.gguf) | Q3_K_M | 3 | 33.19 GB| 35.69 GB | very small, high quality loss |
133
+ | [shiningvaliant-1.2.Q3_K_L.gguf](https://huggingface.co/TheBloke/ShiningValiant-1.3-GGUF/blob/main/shiningvaliant-1.2.Q3_K_L.gguf) | Q3_K_L | 3 | 36.15 GB| 38.65 GB | small, substantial quality loss |
134
+ | [shiningvaliant-1.2.Q4_0.gguf](https://huggingface.co/TheBloke/ShiningValiant-1.3-GGUF/blob/main/shiningvaliant-1.2.Q4_0.gguf) | Q4_0 | 4 | 38.87 GB| 41.37 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
135
+ | [shiningvaliant-1.2.Q4_K_S.gguf](https://huggingface.co/TheBloke/ShiningValiant-1.3-GGUF/blob/main/shiningvaliant-1.2.Q4_K_S.gguf) | Q4_K_S | 4 | 39.07 GB| 41.57 GB | small, greater quality loss |
136
+ | [shiningvaliant-1.2.Q4_K_M.gguf](https://huggingface.co/TheBloke/ShiningValiant-1.3-GGUF/blob/main/shiningvaliant-1.2.Q4_K_M.gguf) | Q4_K_M | 4 | 41.42 GB| 43.92 GB | medium, balanced quality - recommended |
137
+ | [shiningvaliant-1.2.Q5_0.gguf](https://huggingface.co/TheBloke/ShiningValiant-1.3-GGUF/blob/main/shiningvaliant-1.2.Q5_0.gguf) | Q5_0 | 5 | 47.46 GB| 49.96 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
138
+ | [shiningvaliant-1.2.Q5_K_S.gguf](https://huggingface.co/TheBloke/ShiningValiant-1.3-GGUF/blob/main/shiningvaliant-1.2.Q5_K_S.gguf) | Q5_K_S | 5 | 47.46 GB| 49.96 GB | large, low quality loss - recommended |
139
+ | [shiningvaliant-1.2.Q5_K_M.gguf](https://huggingface.co/TheBloke/ShiningValiant-1.3-GGUF/blob/main/shiningvaliant-1.2.Q5_K_M.gguf) | Q5_K_M | 5 | 48.75 GB| 51.25 GB | large, very low quality loss - recommended |
140
+ | shiningvaliant-1.2.Q6_K.gguf | Q6_K | 6 | 56.59 GB| 59.09 GB | very large, extremely low quality loss |
141
+ | shiningvaliant-1.2.Q8_0.gguf | Q8_0 | 8 | 73.29 GB| 75.79 GB | very large, extremely low quality loss - not recommended |
142
+
143
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
144
+
145
+ ### Q6_K and Q8_0 files are split and require joining
146
+
147
+ **Note:** HF does not support uploading files larger than 50GB. Therefore I have uploaded the Q6_K and Q8_0 files as split files.
148
+
149
+ <details>
150
+ <summary>Click for instructions regarding Q6_K and Q8_0 files</summary>
151
+
152
+ ### q6_K
153
+ Please download:
154
+ * `shiningvaliant-1.2.Q6_K.gguf-split-a`
155
+ * `shiningvaliant-1.2.Q6_K.gguf-split-b`
156
+
157
+ ### q8_0
158
+ Please download:
159
+ * `shiningvaliant-1.2.Q8_0.gguf-split-a`
160
+ * `shiningvaliant-1.2.Q8_0.gguf-split-b`
161
+
162
+ To join the files, do the following:
163
+
164
+ Linux and macOS:
165
+ ```
166
+ cat shiningvaliant-1.2.Q6_K.gguf-split-* > shiningvaliant-1.2.Q6_K.gguf && rm shiningvaliant-1.2.Q6_K.gguf-split-*
167
+ cat shiningvaliant-1.2.Q8_0.gguf-split-* > shiningvaliant-1.2.Q8_0.gguf && rm shiningvaliant-1.2.Q8_0.gguf-split-*
168
+ ```
169
+ Windows command line:
170
+ ```
171
+ COPY /B shiningvaliant-1.2.Q6_K.gguf-split-a + shiningvaliant-1.2.Q6_K.gguf-split-b shiningvaliant-1.2.Q6_K.gguf
172
+ del shiningvaliant-1.2.Q6_K.gguf-split-a shiningvaliant-1.2.Q6_K.gguf-split-b
173
+
174
+ COPY /B shiningvaliant-1.2.Q8_0.gguf-split-a + shiningvaliant-1.2.Q8_0.gguf-split-b shiningvaliant-1.2.Q8_0.gguf
175
+ del shiningvaliant-1.2.Q8_0.gguf-split-a shiningvaliant-1.2.Q8_0.gguf-split-b
176
+ ```
177
+
178
+ </details>
179
+ <!-- README_GGUF.md-provided-files end -->
180
+
181
+ <!-- README_GGUF.md-how-to-download start -->
182
+ ## How to download GGUF files
183
+
184
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
185
+
186
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
187
+
188
+ * LM Studio
189
+ * LoLLMS Web UI
190
+ * Faraday.dev
191
+
192
+ ### In `text-generation-webui`
193
+
194
+ Under Download Model, you can enter the model repo: TheBloke/ShiningValiant-1.3-GGUF and below it, a specific filename to download, such as: shiningvaliant-1.2.Q4_K_M.gguf.
195
+
196
+ Then click Download.
197
+
198
+ ### On the command line, including multiple files at once
199
+
200
+ I recommend using the `huggingface-hub` Python library:
201
+
202
+ ```shell
203
+ pip3 install huggingface-hub
204
+ ```
205
+
206
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
207
+
208
+ ```shell
209
+ huggingface-cli download TheBloke/ShiningValiant-1.3-GGUF shiningvaliant-1.2.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
210
+ ```
211
+
212
+ <details>
213
+ <summary>More advanced huggingface-cli download usage (click to read)</summary>
214
+
215
+ You can also download multiple files at once with a pattern:
216
+
217
+ ```shell
218
+ huggingface-cli download TheBloke/ShiningValiant-1.3-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
219
+ ```
220
+
221
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
222
+
223
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
224
+
225
+ ```shell
226
+ pip3 install hf_transfer
227
+ ```
228
+
229
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
230
+
231
+ ```shell
232
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/ShiningValiant-1.3-GGUF shiningvaliant-1.2.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
233
+ ```
234
+
235
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
236
+ </details>
237
+ <!-- README_GGUF.md-how-to-download end -->
238
+
239
+ <!-- README_GGUF.md-how-to-run start -->
240
+ ## Example `llama.cpp` command
241
+
242
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
243
+
244
+ ```shell
245
+ ./main -ngl 35 -m shiningvaliant-1.2.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "[INST] <<SYS>>\n{system_message}\n<</SYS>>\n{prompt} [/INST]"
246
+ ```
247
+
248
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
249
+
250
+ Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
251
+
252
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
253
+
254
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
255
+
256
+ ## How to run in `text-generation-webui`
257
+
258
+ Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
259
+
260
+ ## How to run from Python code
261
+
262
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
263
+
264
+ ### How to load this model in Python code, using llama-cpp-python
265
+
266
+ For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
267
+
268
+ #### First install the package
269
+
270
+ Run one of the following commands, according to your system:
271
+
272
+ ```shell
273
+ # Base ctransformers with no GPU acceleration
274
+ pip install llama-cpp-python
275
+ # With NVidia CUDA acceleration
276
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
277
+ # Or with OpenBLAS acceleration
278
+ CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
279
+ # Or with CLBLast acceleration
280
+ CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
281
+ # Or with AMD ROCm GPU acceleration (Linux only)
282
+ CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
283
+ # Or with Metal GPU acceleration for macOS systems only
284
+ CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
285
+
286
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
287
+ $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
288
+ pip install llama-cpp-python
289
+ ```
290
+
291
+ #### Simple llama-cpp-python example code
292
+
293
+ ```python
294
+ from llama_cpp import Llama
295
+
296
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
297
+ llm = Llama(
298
+ model_path="./shiningvaliant-1.2.Q4_K_M.gguf", # Download the model file first
299
+ n_ctx=4096, # The max sequence length to use - note that longer sequence lengths require much more resources
300
+ n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
301
+ n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
302
+ )
303
+
304
+ # Simple inference example
305
+ output = llm(
306
+ "[INST] <<SYS>>\n{system_message}\n<</SYS>>\n{prompt} [/INST]", # Prompt
307
+ max_tokens=512, # Generate up to 512 tokens
308
+ stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
309
+ echo=True # Whether to echo the prompt
310
+ )
311
+
312
+ # Chat Completion API
313
+
314
+ llm = Llama(model_path="./shiningvaliant-1.2.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
315
+ llm.create_chat_completion(
316
+ messages = [
317
+ {"role": "system", "content": "You are a story writing assistant."},
318
+ {
319
+ "role": "user",
320
+ "content": "Write a story about llamas."
321
+ }
322
+ ]
323
+ )
324
+ ```
325
+
326
+ ## How to use with LangChain
327
+
328
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
329
+
330
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
331
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
332
+
333
+ <!-- README_GGUF.md-how-to-run end -->
334
+
335
+ <!-- footer start -->
336
+ <!-- 200823 -->
337
+ ## Discord
338
+
339
+ For further support, and discussions on these models and AI in general, join us at:
340
+
341
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
342
+
343
+ ## Thanks, and how to contribute
344
+
345
+ Thanks to the [chirper.ai](https://chirper.ai) team!
346
+
347
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
348
+
349
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
350
+
351
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
352
+
353
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
354
+
355
+ * Patreon: https://patreon.com/TheBlokeAI
356
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
357
+
358
+ **Special thanks to**: Aemon Algiz.
359
+
360
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
361
+
362
+
363
+ Thank you to all my generous patrons and donaters!
364
+
365
+ And thank you again to a16z for their generous grant.
366
+
367
+ <!-- footer end -->
368
+
369
+ <!-- original-model-card start -->
370
+ # Original model card: Valiant Labs's ShiningValiant 1.3
371
+
372
+
373
+
374
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64f267a8a4f79a118e0fcc89/5rUJPhu_6LyDvSQogSVhk.jpeg)
375
+
376
+
377
+ Shining Valiant is a chat model built on the Llama 2 architecture, finetuned on our data for insight, creativity, passion, and friendliness.
378
+ - Uses the llama-2-70b-chat model, with safetensors
379
+ - Finetuned on multiple runs across private and public data
380
+ - Data focused on knowledge, enthusiasm, and structured reasoning
381
+
382
+ ## Version
383
+
384
+ The current version is **1.3!**
385
+
386
+ We're thrilled to bring you our newest release!
387
+
388
+ Previous versions remain available in the repository. New models will be released for everyone once our team's training and validation process is complete.
389
+
390
+ ## Evaluation
391
+
392
+ | Model | Avg | ARC | HS | MMLU | TQA | WG | GSM |
393
+ |-----------------------|--------|-------|-------|--------|-------|-------|-------|
394
+ | **Shining Valiant 1.3** | 73.78 | 71.33 | 90.96 | 71.21 | 70.29 | 84.21 | 54.66 |
395
+
396
+ ## Prompting Guide
397
+ Shining Valiant uses the same prompt format as Llama 2 Chat - feel free to use your existing prompts and scripts!
398
+ A few examples of different formats:
399
+
400
+ 1. [INST] Good morning! Can you let me know how to parse a text file and turn the semicolons into commas? [/INST]
401
+
402
+ 2. [INST] (You are an intelligent, helpful AI assistant.) Hello, can you write me a thank you letter? [/INST]
403
+
404
+ 3. [INST] << SYS >>You are an intelligent, helpful AI assistant.<< /SYS >>Deep dive about a country with interesting history: [/INST]
405
+
406
+ ## The Model
407
+ Shining Valiant is built on top of Sunset Boulevard, which uses Llama 2's 70b parameter architecture and features upgraded general capability.
408
+
409
+ From there, we've created Shining Valiant through multiple finetuning runs on different compositions of our private dataset.
410
+
411
+ Our private data focuses primarily on applying Shining Valiant's personality: she's friendly, enthusiastic, insightful, knowledgeable, and loves to learn!
412
+
413
+ We are actively working on expanding and improving the Shining Valiant dataset for use in future releases of this model and others.
414
+
415
+
416
+
417
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/63444f2687964b331809eb55/VCJ8Fmefd8cdVhXSSxJiD.jpeg)
418
+
419
+
420
+ Shining Valiant is created by [Valiant Labs.](http://valiantlabs.ca/)
421
+
422
+ [Follow us on X for updates on our models!](https://twitter.com/valiant_labs)
423
+
424
+ We care about open source.
425
+ For everyone to use.
426
+
427
+ We encourage others to finetune further from our models.
428
+
429
+ <!-- original-model-card end -->