| import torch |
| import transformers |
| import transformers.models.llama.modeling_llama |
| from einops import rearrange |
| import random |
|
|
| |
|
|
| class ScaledRotaryEmbedding(torch.nn.Module): |
| def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
| super().__init__() |
| inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim)) |
| self.register_buffer("inv_freq", inv_freq) |
| |
| max_position_embeddings = 8192 |
|
|
| |
| self.max_seq_len_cached = max_position_embeddings |
| t = torch.arange( |
| self.max_seq_len_cached, |
| device=self.inv_freq.device, |
| dtype=self.inv_freq.dtype, |
| ) |
|
|
| self.scale = 1 / 4 |
| t *= self.scale |
|
|
| freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
| |
| emb = torch.cat((freqs, freqs), dim=-1) |
| self.register_buffer( |
| "cos_cached", emb.cos()[None, None, :, :], persistent=False |
| ) |
| self.register_buffer( |
| "sin_cached", emb.sin()[None, None, :, :], persistent=False |
| ) |
|
|
| def forward(self, x, seq_len=None): |
| |
| |
| if seq_len > self.max_seq_len_cached: |
| self.max_seq_len_cached = seq_len |
| t = torch.arange( |
| self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype |
| ) |
| t *= self.scale |
| freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
| |
| emb = torch.cat((freqs, freqs), dim=-1).to(x.device) |
| self.register_buffer( |
| "cos_cached", emb.cos()[None, None, :, :], persistent=False |
| ) |
| self.register_buffer( |
| "sin_cached", emb.sin()[None, None, :, :], persistent=False |
| ) |
| return ( |
| self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), |
| self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), |
| ) |
|
|
|
|
| def replace_llama_rope_with_scaled_rope(): |
| transformers.models.llama.modeling_llama.LlamaRotaryEmbedding = ( |
| ScaledRotaryEmbedding |
| ) |
|
|