TheBloke commited on
Commit
f46ec43
·
1 Parent(s): 19e5f46

Upload new k-quant GGML quantised models.

Browse files
Files changed (1) hide show
  1. README.md +82 -39
README.md CHANGED
@@ -1,11 +1,6 @@
1
  ---
2
- license: other
3
  inference: false
4
- tags:
5
- - llama
6
- - pytorch
7
- - chatbot
8
- - storywriting
9
  ---
10
 
11
  <!-- header start -->
@@ -33,39 +28,71 @@ GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/gger
33
  * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
34
  * [ctransformers](https://github.com/marella/ctransformers)
35
 
36
- ## Other repositories available
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
- * [Elinas' 4-bit GPTQ models for GPU inference](https://huggingface.co/elinas/chronos-13b-4bit)
39
- * [4-bit, 5-bit, and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/chronos-13B-GGML)
40
- * [Elinas' original unquantised fp16 model in HF format](https://huggingface.co/elinas/chronos-13b)
41
 
42
- ## THE FILES IN MAIN BRANCH REQUIRES LATEST LLAMA.CPP (May 19th 2023 - commit 2d5db48)!
43
 
44
- llama.cpp recently made another breaking change to its quantisation methods - https://github.com/ggerganov/llama.cpp/pull/1508
45
 
46
- I have quantised the GGML files in this repo with the latest version. Therefore you will require llama.cpp compiled on May 19th or later (commit `2d5db48` or later) to use them.
 
 
 
 
 
 
 
 
 
 
 
47
 
48
  ## Provided files
49
- | Name | Quant method | Bits | Size | RAM required | Use case |
50
  | ---- | ---- | ---- | ---- | ---- | ----- |
51
- | chronos-13b.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB | 9.82 GB | 4-bit. |
52
- | chronos-13b.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB | 10.64 GB | 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
53
- | chronos-13b.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB | 11.45 GB | 5-bit. Higher accuracy, higher resource usage and slower inference. |
54
- | chronos-13b.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB | 12.26 GB | 5-bit. Even higher accuracy, resource usage and slower inference. |
55
- | chronos-13b.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB | 16.33 GB | 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use. |
56
-
 
 
 
 
 
 
 
 
 
 
 
57
 
58
  ## How to run in `llama.cpp`
59
 
60
  I use the following command line; adjust for your tastes and needs:
61
 
62
  ```
63
- ./main -t 12 -m chronos-13b.v3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.
64
- ### Instruction:
65
- Write a story about llamas
66
- ### Response:"
67
  ```
68
- Change `-t 12` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
 
 
69
 
70
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
71
 
@@ -93,12 +120,16 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
93
  * Patreon: https://patreon.com/TheBlokeAI
94
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
95
 
96
- **Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.
 
 
97
 
98
  Thank you to all my generous patrons and donaters!
 
99
  <!-- footer end -->
100
 
101
- # Original model card: Chronos 13B
 
102
 
103
  # chronos-13b
104
 
@@ -108,8 +139,20 @@ This model is primarily focused on chat, roleplay, and storywriting, but can acc
108
 
109
  Chronos generates very long outputs with coherent text, largely due to the human inputs it was trained on.
110
 
111
- 4bit Quantized (cuda) version: https://huggingface.co/elinas/chronos-13b-4bit
 
 
 
 
 
 
 
112
 
 
 
 
 
 
113
  # LLaMA Model Card
114
 
115
  ## Model details
@@ -187,11 +230,11 @@ Hyperparameters for the model architecture
187
  </tr>
188
  <tr>
189
  <th>Number of parameters</th><th>dimension</th><th>n heads</th><th>n layers</th><th>Learn rate</th><th>Batch size</th><th>n tokens</th>
190
- </tr>
191
  </thead>
192
- <tbody>
193
  <tr>
194
- <th>7B</th> <th>4096</th> <th>32</th> <th>32</th> <th>3.0E-04</th><th>4M</th><th>1T
195
  </tr>
196
  <tr>
197
  <th>13B</th><th>5120</th><th>40</th><th>40</th><th>3.0E-04</th><th>4M</th><th>1T
@@ -201,13 +244,13 @@ Hyperparameters for the model architecture
201
  </tr>
202
  <tr>
203
  <th>65B</th><th>8192</th><th>64</th><th>80</th><th>1.5.E-04</th><th>4M</th><th>1.4T
204
- </tr>
205
  </tbody>
206
  </table>
207
 
208
  *Table 1 - Summary of LLama Model Hyperparameters*
209
 
210
- We present our results on eight standard common sense reasoning benchmarks in the table below.
211
  <table>
212
  <thead>
213
  <tr>
@@ -215,23 +258,23 @@ We present our results on eight standard common sense reasoning benchmarks in th
215
  </tr>
216
  <tr>
217
  <th>Number of parameters</th> <th>BoolQ</th><th>PIQA</th><th>SIQA</th><th>HellaSwag</th><th>WinoGrande</th><th>ARC-e</th><th>ARC-c</th><th>OBQA</th><th>COPA</th>
218
- </tr>
219
  </thead>
220
- <tbody>
221
- <tr>
222
  <th>7B</th><th>76.5</th><th>79.8</th><th>48.9</th><th>76.1</th><th>70.1</th><th>76.7</th><th>47.6</th><th>57.2</th><th>93
223
- </th>
224
  <tr><th>13B</th><th>78.1</th><th>80.1</th><th>50.4</th><th>79.2</th><th>73</th><th>78.1</th><th>52.7</th><th>56.4</th><th>94
225
  </th>
226
  <tr><th>33B</th><th>83.1</th><th>82.3</th><th>50.4</th><th>82.8</th><th>76</th><th>81.4</th><th>57.8</th><th>58.6</th><th>92
227
  </th>
228
- <tr><th>65B</th><th>85.3</th><th>82.8</th><th>52.3</th><th>84.2</th><th>77</th><th>81.5</th><th>56</th><th>60.2</th><th>94</th></tr>
229
  </tbody>
230
  </table>
231
  *Table 2 - Summary of LLama Model Performance on Reasoning tasks*
232
 
233
 
234
- We present our results on bias in the table below. Note that lower value is better indicating lower bias.
235
 
236
 
237
  | No | Category | FAIR LLM |
 
1
  ---
 
2
  inference: false
3
+ license: other
 
 
 
 
4
  ---
5
 
6
  <!-- header start -->
 
28
  * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
29
  * [ctransformers](https://github.com/marella/ctransformers)
30
 
31
+ ## Repositories available
32
+
33
+ * [4-bit GPTQ models for GPU inference](https://huggingface.co/elinas/chronos-13b-4bit)
34
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/chronos-13B-GGML)
35
+ * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/elinas/chronos-13b)
36
+
37
+ <!-- compatibility_ggml start -->
38
+ ## Compatibility
39
+
40
+ ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
41
+
42
+ I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`.
43
+
44
+ They should be compatible with all current UIs and libraries that use llama.cpp, such as those listed at the top of this README.
45
 
46
+ ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
 
 
47
 
48
+ These new quantisation methods are only compatible with llama.cpp as of June 6th, commit `2d43387`.
49
 
50
+ They will NOT be compatible with koboldcpp, text-generation-ui, and other UIs and libraries yet. Support is expected to come over the next few days.
51
 
52
+ ## Explanation of the new k-quant methods
53
+
54
+ The new methods available are:
55
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
56
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
57
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
58
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
59
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
60
+ * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
61
+
62
+ Refer to the Provided Files table below to see what files use which methods, and how.
63
+ <!-- compatibility_ggml end -->
64
 
65
  ## Provided files
66
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
67
  | ---- | ---- | ---- | ---- | ---- | ----- |
68
+ | .ggmlv3.q2_K.bin | q2_K | 2 | 5.43 GB | 7.93 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
69
+ | .ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.87 GB | 9.37 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
70
+ | .ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.25 GB | 8.75 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
71
+ | .ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.59 GB | 8.09 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
72
+ | .ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.82 GB | 10.32 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
73
+ | .ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.32 GB | 9.82 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
74
+ | .ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.21 GB | 11.71 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
75
+ | .ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.95 GB | 11.45 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
76
+ | .ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
77
+ | chronos-13b.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB | 9.82 GB | Original llama.cpp quant method, 4-bit. |
78
+ | chronos-13b.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB | 10.64 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
79
+ | chronos-13b.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB | 11.45 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
80
+ | chronos-13b.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB | 12.26 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
81
+ | chronos-13b.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB | 16.33 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
82
+
83
+
84
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
85
 
86
  ## How to run in `llama.cpp`
87
 
88
  I use the following command line; adjust for your tastes and needs:
89
 
90
  ```
91
+ ./main -t 10 -ngl 32 -m .ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
 
 
 
92
  ```
93
+ Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
94
+
95
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
96
 
97
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
98
 
 
120
  * Patreon: https://patreon.com/TheBlokeAI
121
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
122
 
123
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
124
+
125
+ **Patreon special mentions**: Ajan Kanaga, Kalila, Derek Yates, Sean Connelly, Luke, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, trip7s trip, Jonathan Leane, Talal Aujan, Artur Olbinski, Cory Kujawski, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Johann-Peter Hartmann.
126
 
127
  Thank you to all my generous patrons and donaters!
128
+
129
  <!-- footer end -->
130
 
131
+ # Original model card: Elinas' Chronos 13B
132
+
133
 
134
  # chronos-13b
135
 
 
139
 
140
  Chronos generates very long outputs with coherent text, largely due to the human inputs it was trained on.
141
 
142
+ This model uses Alpaca formatting, so for optimal model performance, use:
143
+ ```
144
+ ### Instruction:
145
+ Your instruction or question here.
146
+ ### Response:
147
+ ```
148
+
149
+ [4bit Quantized (cuda) version](https://huggingface.co/elinas/chronos-13b-4bit)
150
 
151
+ [GGML Version provided by @TheBloke](https://huggingface.co/TheBloke/chronos-13B-GGML)
152
+
153
+ --
154
+ license: other
155
+ ---
156
  # LLaMA Model Card
157
 
158
  ## Model details
 
230
  </tr>
231
  <tr>
232
  <th>Number of parameters</th><th>dimension</th><th>n heads</th><th>n layers</th><th>Learn rate</th><th>Batch size</th><th>n tokens</th>
233
+ </tr>
234
  </thead>
235
+ <tbody>
236
  <tr>
237
+ <th>7B</th> <th>4096</th> <th>32</th> <th>32</th> <th>3.0E-04</th><th>4M</th><th>1T
238
  </tr>
239
  <tr>
240
  <th>13B</th><th>5120</th><th>40</th><th>40</th><th>3.0E-04</th><th>4M</th><th>1T
 
244
  </tr>
245
  <tr>
246
  <th>65B</th><th>8192</th><th>64</th><th>80</th><th>1.5.E-04</th><th>4M</th><th>1.4T
247
+ </tr>
248
  </tbody>
249
  </table>
250
 
251
  *Table 1 - Summary of LLama Model Hyperparameters*
252
 
253
+ We present our results on eight standard common sense reasoning benchmarks in the table below.
254
  <table>
255
  <thead>
256
  <tr>
 
258
  </tr>
259
  <tr>
260
  <th>Number of parameters</th> <th>BoolQ</th><th>PIQA</th><th>SIQA</th><th>HellaSwag</th><th>WinoGrande</th><th>ARC-e</th><th>ARC-c</th><th>OBQA</th><th>COPA</th>
261
+ </tr>
262
  </thead>
263
+ <tbody>
264
+ <tr>
265
  <th>7B</th><th>76.5</th><th>79.8</th><th>48.9</th><th>76.1</th><th>70.1</th><th>76.7</th><th>47.6</th><th>57.2</th><th>93
266
+ </th>
267
  <tr><th>13B</th><th>78.1</th><th>80.1</th><th>50.4</th><th>79.2</th><th>73</th><th>78.1</th><th>52.7</th><th>56.4</th><th>94
268
  </th>
269
  <tr><th>33B</th><th>83.1</th><th>82.3</th><th>50.4</th><th>82.8</th><th>76</th><th>81.4</th><th>57.8</th><th>58.6</th><th>92
270
  </th>
271
+ <tr><th>65B</th><th>85.3</th><th>82.8</th><th>52.3</th><th>84.2</th><th>77</th><th>81.5</th><th>56</th><th>60.2</th><th>94</th></tr>
272
  </tbody>
273
  </table>
274
  *Table 2 - Summary of LLama Model Performance on Reasoning tasks*
275
 
276
 
277
+ We present our results on bias in the table below. Note that lower value is better indicating lower bias.
278
 
279
 
280
  | No | Category | FAIR LLM |