TheBloke commited on
Commit
7ed6664
·
1 Parent(s): 62cbd2e

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +131 -61
README.md CHANGED
@@ -1,7 +1,23 @@
1
  ---
 
2
  inference: false
3
  license: other
 
 
4
  model_type: llama
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  tags:
6
  - llama
7
  - pytorch
@@ -26,150 +42,202 @@ tags:
26
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
27
  <!-- header end -->
28
 
29
- # Austism's Chronos Hermes 13B GPTQ
 
 
30
 
31
- These files are GPTQ model files for [Austism's Chronos Hermes 13B](https://huggingface.co/Austism/chronos-hermes-13b).
 
32
 
33
- Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
34
 
35
- These models were quantised using hardware kindly provided by [Latitude.sh](https://www.latitude.sh/accelerate).
36
 
 
 
37
  ## Repositories available
38
 
 
39
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/chronos-hermes-13B-GPTQ)
40
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/chronos-hermes-13B-GGML)
41
- * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Austism/chronos-hermes-13b)
 
42
 
 
43
  ## Prompt template: Alpaca
44
 
45
  ```
46
  Below is an instruction that describes a task. Write a response that appropriately completes the request.
47
 
48
- ### Instruction: {prompt}
 
49
 
50
  ### Response:
 
51
  ```
52
 
53
- ## Provided files
 
 
 
 
 
 
 
 
 
 
 
54
 
55
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
56
 
57
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
58
 
59
- | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
60
- | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
61
- | main | 4 | 128 | False | 7.45 GB | True | GPTQ-for-LLaMa | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
62
- | gptq-4bit-32g-actorder_True | 4 | 32 | True | 8.00 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
63
- | gptq-4bit-64g-actorder_True | 4 | 64 | True | 7.51 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
64
- | gptq-4bit-128g-actorder_True | 4 | 128 | True | 7.26 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
65
- | gptq-8bit--1g-actorder_True | 8 | None | True | 13.36 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
66
- | gptq-8bit-128g-actorder_False | 8 | 128 | False | 13.65 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
 
 
 
68
  ## How to download from branches
69
 
70
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/chronos-hermes-13B-GPTQ:gptq-4bit-32g-actorder_True`
71
  - With Git, you can clone a branch with:
72
  ```
73
- git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/chronos-hermes-13B-GPTQ`
74
  ```
75
  - In Python Transformers code, the branch is the `revision` parameter; see below.
76
-
 
77
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
78
 
79
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
80
 
81
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
82
 
83
  1. Click the **Model tab**.
84
  2. Under **Download custom model or LoRA**, enter `TheBloke/chronos-hermes-13B-GPTQ`.
85
- - To download from a specific branch, enter for example `TheBloke/chronos-hermes-13B-GPTQ:gptq-4bit-32g-actorder_True`
86
  - see Provided Files above for the list of branches for each option.
87
  3. Click **Download**.
88
- 4. The model will start downloading. Once it's finished it will say "Done"
89
  5. In the top left, click the refresh icon next to **Model**.
90
  6. In the **Model** dropdown, choose the model you just downloaded: `chronos-hermes-13B-GPTQ`
91
  7. The model will automatically load, and is now ready for use!
92
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
93
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
94
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
95
 
 
96
  ## How to use this GPTQ model from Python code
97
 
98
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
 
100
- `GITHUB_ACTIONS=true pip install auto-gptq`
 
 
 
 
101
 
102
- Then try the following example code:
103
 
104
  ```python
105
- from transformers import AutoTokenizer, pipeline, logging
106
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
107
 
108
  model_name_or_path = "TheBloke/chronos-hermes-13B-GPTQ"
109
- model_basename = "chronos-hermes-13b-GPTQ-4bit-128g.no-act.order"
110
-
111
- use_triton = False
 
 
 
112
 
113
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
114
 
115
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
116
- model_basename=model_basename
117
- use_safetensors=True,
118
- trust_remote_code=True,
119
- device="cuda:0",
120
- use_triton=use_triton,
121
- quantize_config=None)
122
-
123
- """
124
- To download from a specific branch, use the revision parameter, as in this example:
125
-
126
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
127
- revision="gptq-4bit-32g-actorder_True",
128
- model_basename=model_basename,
129
- use_safetensors=True,
130
- trust_remote_code=True,
131
- device="cuda:0",
132
- quantize_config=None)
133
- """
134
-
135
  prompt = "Tell me about AI"
136
  prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
137
 
138
- ### Instruction: {prompt}
 
139
 
140
  ### Response:
 
141
  '''
142
 
143
  print("\n\n*** Generate:")
144
 
145
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
146
- output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
147
  print(tokenizer.decode(output[0]))
148
 
149
  # Inference can also be done using transformers' pipeline
150
 
151
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
152
- logging.set_verbosity(logging.CRITICAL)
153
-
154
  print("*** Pipeline:")
155
  pipe = pipeline(
156
  "text-generation",
157
  model=model,
158
  tokenizer=tokenizer,
159
  max_new_tokens=512,
 
160
  temperature=0.7,
161
  top_p=0.95,
162
- repetition_penalty=1.15
 
163
  )
164
 
165
  print(pipe(prompt_template)[0]['generated_text'])
166
  ```
 
167
 
 
168
  ## Compatibility
169
 
170
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
171
 
172
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
 
 
173
 
174
  <!-- footer start -->
175
  <!-- 200823 -->
@@ -179,10 +247,12 @@ For further support, and discussions on these models and AI in general, join us
179
 
180
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
181
 
182
- ## Thanks, and how to contribute.
183
 
184
  Thanks to the [chirper.ai](https://chirper.ai) team!
185
 
 
 
186
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
187
 
188
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -194,7 +264,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
194
 
195
  **Special thanks to**: Aemon Algiz.
196
 
197
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
198
 
199
 
200
  Thank you to all my generous patrons and donaters!
 
1
  ---
2
+ base_model: https://huggingface.co/Austism/chronos-hermes-13b
3
  inference: false
4
  license: other
5
+ model_creator: Austism
6
+ model_name: Chronos Hermes 13B
7
  model_type: llama
8
+ prompt_template: 'Below is an instruction that describes a task. Write a response
9
+ that appropriately completes the request.
10
+
11
+
12
+ ### Instruction:
13
+
14
+ {prompt}
15
+
16
+
17
+ ### Response:
18
+
19
+ '
20
+ quantized_by: TheBloke
21
  tags:
22
  - llama
23
  - pytorch
 
42
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
43
  <!-- header end -->
44
 
45
+ # Chronos Hermes 13B - GPTQ
46
+ - Model creator: [Austism](https://huggingface.co/Austism)
47
+ - Original model: [Chronos Hermes 13B](https://huggingface.co/Austism/chronos-hermes-13b)
48
 
49
+ <!-- description start -->
50
+ ## Description
51
 
52
+ This repo contains GPTQ model files for [Austism's Chronos Hermes 13B](https://huggingface.co/Austism/chronos-hermes-13b).
53
 
54
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
55
 
56
+ <!-- description end -->
57
+ <!-- repositories-available start -->
58
  ## Repositories available
59
 
60
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/chronos-hermes-13B-AWQ)
61
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/chronos-hermes-13B-GPTQ)
62
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/chronos-hermes-13B-GGUF)
63
+ * [Austism's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Austism/chronos-hermes-13b)
64
+ <!-- repositories-available end -->
65
 
66
+ <!-- prompt-template start -->
67
  ## Prompt template: Alpaca
68
 
69
  ```
70
  Below is an instruction that describes a task. Write a response that appropriately completes the request.
71
 
72
+ ### Instruction:
73
+ {prompt}
74
 
75
  ### Response:
76
+
77
  ```
78
 
79
+ <!-- prompt-template end -->
80
+ <!-- licensing start -->
81
+ ## Licensing
82
+
83
+ The creator of the source model has listed its license as `other`, and this quantization has therefore used that same license.
84
+
85
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
86
+
87
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Austism's Chronos Hermes 13B](https://huggingface.co/Austism/chronos-hermes-13b).
88
+ <!-- licensing end -->
89
+ <!-- README_GPTQ.md-provided-files start -->
90
+ ## Provided files and GPTQ parameters
91
 
92
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
93
 
94
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
95
 
96
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
97
+
98
+ <details>
99
+ <summary>Explanation of GPTQ parameters</summary>
100
+
101
+ - Bits: The bit size of the quantised model.
102
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
103
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
104
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
105
+ - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
106
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
107
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
108
+
109
+ </details>
110
+
111
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
112
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
113
+ | [main](https://huggingface.co/TheBloke/chronos-hermes-13B-GPTQ/tree/main) | 4 | 128 | No | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 7.45 GB | Yes | 4-bit, without Act Order and group size 128g. |
114
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/chronos-hermes-13B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
115
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/chronos-hermes-13B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
116
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/chronos-hermes-13B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
117
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/chronos-hermes-13B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
118
+ | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/chronos-hermes-13B-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
119
 
120
+ <!-- README_GPTQ.md-provided-files end -->
121
+
122
+ <!-- README_GPTQ.md-download-from-branches start -->
123
  ## How to download from branches
124
 
125
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/chronos-hermes-13B-GPTQ:main`
126
  - With Git, you can clone a branch with:
127
  ```
128
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/chronos-hermes-13B-GPTQ
129
  ```
130
  - In Python Transformers code, the branch is the `revision` parameter; see below.
131
+ <!-- README_GPTQ.md-download-from-branches end -->
132
+ <!-- README_GPTQ.md-text-generation-webui start -->
133
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
134
 
135
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
136
 
137
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
138
 
139
  1. Click the **Model tab**.
140
  2. Under **Download custom model or LoRA**, enter `TheBloke/chronos-hermes-13B-GPTQ`.
141
+ - To download from a specific branch, enter for example `TheBloke/chronos-hermes-13B-GPTQ:main`
142
  - see Provided Files above for the list of branches for each option.
143
  3. Click **Download**.
144
+ 4. The model will start downloading. Once it's finished it will say "Done".
145
  5. In the top left, click the refresh icon next to **Model**.
146
  6. In the **Model** dropdown, choose the model you just downloaded: `chronos-hermes-13B-GPTQ`
147
  7. The model will automatically load, and is now ready for use!
148
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
149
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
150
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
151
+ <!-- README_GPTQ.md-text-generation-webui end -->
152
 
153
+ <!-- README_GPTQ.md-use-from-python start -->
154
  ## How to use this GPTQ model from Python code
155
 
156
+ ### Install the necessary packages
157
+
158
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
159
+
160
+ ```shell
161
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
162
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
163
+ ```
164
+
165
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
166
+
167
+ ```shell
168
+ pip3 uninstall -y auto-gptq
169
+ git clone https://github.com/PanQiWei/AutoGPTQ
170
+ cd AutoGPTQ
171
+ pip3 install .
172
+ ```
173
+
174
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
175
 
176
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
177
+ ```shell
178
+ pip3 uninstall -y transformers
179
+ pip3 install git+https://github.com/huggingface/transformers.git
180
+ ```
181
 
182
+ ### You can then use the following code
183
 
184
  ```python
185
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
186
 
187
  model_name_or_path = "TheBloke/chronos-hermes-13B-GPTQ"
188
+ # To use a different branch, change revision
189
+ # For example: revision="main"
190
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
191
+ device_map="auto",
192
+ trust_remote_code=True,
193
+ revision="main")
194
 
195
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197
  prompt = "Tell me about AI"
198
  prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
199
 
200
+ ### Instruction:
201
+ {prompt}
202
 
203
  ### Response:
204
+
205
  '''
206
 
207
  print("\n\n*** Generate:")
208
 
209
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
210
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
211
  print(tokenizer.decode(output[0]))
212
 
213
  # Inference can also be done using transformers' pipeline
214
 
 
 
 
215
  print("*** Pipeline:")
216
  pipe = pipeline(
217
  "text-generation",
218
  model=model,
219
  tokenizer=tokenizer,
220
  max_new_tokens=512,
221
+ do_sample=True,
222
  temperature=0.7,
223
  top_p=0.95,
224
+ top_k=40,
225
+ repetition_penalty=1.1
226
  )
227
 
228
  print(pipe(prompt_template)[0]['generated_text'])
229
  ```
230
+ <!-- README_GPTQ.md-use-from-python end -->
231
 
232
+ <!-- README_GPTQ.md-compatibility start -->
233
  ## Compatibility
234
 
235
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
236
 
237
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
238
+
239
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
240
+ <!-- README_GPTQ.md-compatibility end -->
241
 
242
  <!-- footer start -->
243
  <!-- 200823 -->
 
247
 
248
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
249
 
250
+ ## Thanks, and how to contribute
251
 
252
  Thanks to the [chirper.ai](https://chirper.ai) team!
253
 
254
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
255
+
256
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
257
 
258
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
264
 
265
  **Special thanks to**: Aemon Algiz.
266
 
267
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
268
 
269
 
270
  Thank you to all my generous patrons and donaters!