Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,122 @@
|
|
1 |
---
|
2 |
-
license: cc-by-nc-
|
|
|
|
|
|
|
3 |
tags:
|
4 |
-
-
|
5 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
---
|
|
|
1 |
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
datasets:
|
4 |
+
- chest-xray-pneumonia
|
5 |
+
library_name: PyTorch
|
6 |
tags:
|
7 |
+
- pneumonia-detection
|
8 |
+
- cnn
|
9 |
+
- medical-imaging
|
10 |
+
- binary-classification
|
11 |
+
- chest-xray
|
12 |
+
- healthcare
|
13 |
+
- pytorch
|
14 |
+
model-index:
|
15 |
+
- name: ImprovedPneumoniaCNN
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
type: image-classification
|
19 |
+
name: Pneumonia Detection
|
20 |
+
metrics:
|
21 |
+
- name: Accuracy
|
22 |
+
type: accuracy
|
23 |
+
value: 0.9676
|
24 |
+
- name: F1 Score
|
25 |
+
type: f1
|
26 |
+
value: 0.9685
|
27 |
+
- name: AUC
|
28 |
+
type: auc
|
29 |
+
value: 0.9959
|
30 |
+
- name: Loss
|
31 |
+
type: loss
|
32 |
+
value: 0.0778
|
33 |
+
---
|
34 |
+
|
35 |
+
# 🧠 ImprovedPneumoniaCNN: Pneumonia Detection from Chest X-rays
|
36 |
+
|
37 |
+
This repository hosts `ImprovedPneumoniaCNN`, a custom Convolutional Neural Network model designed to detect **Pneumonia** from chest X-ray images. It incorporates enhancements like dropout, batch normalization, SiLU activation, and Convolutional Block Attention Module (CBAM) for improved robustness and generalization.
|
38 |
+
|
39 |
+
---
|
40 |
+
|
41 |
+
## 📊 Evaluation Results
|
42 |
+
|
43 |
+
| Metric | Score |
|
44 |
+
|----------|---------|
|
45 |
+
| Accuracy | 96.76% |
|
46 |
+
| F1 Score | 0.9685 |
|
47 |
+
| AUC | 0.9959 |
|
48 |
+
| Loss | 0.0778 |
|
49 |
+
|
50 |
+
---
|
51 |
+
|
52 |
+
### Confusion Matrix
|
53 |
+
|
54 |
+
[[1680 42]
|
55 |
+
[ 74 1782]]
|
56 |
+
|
57 |
+
---
|
58 |
+
|
59 |
+
### Classification Report
|
60 |
+
|
61 |
+
| Class | Precision | Recall | F1-Score | Support |
|
62 |
+
|-----------|-----------|--------|----------|---------|
|
63 |
+
| Normal | 0.96 | 0.98 | 0.97 | 1722 |
|
64 |
+
| Pneumonia | 0.98 | 0.96 | 0.97 | 1856 |
|
65 |
+
|
66 |
+
---
|
67 |
+
|
68 |
+
## 🏗️ Architecture Highlights
|
69 |
+
|
70 |
+
- Custom CNN with residual blocks
|
71 |
+
- Uses **CBAM** attention for spatial and channel refinement
|
72 |
+
- **SiLU** activation for better non-linearity
|
73 |
+
- **Dropout** and **BatchNorm** for regularization
|
74 |
+
- Final **Global Average Pooling** + FC layer
|
75 |
+
|
76 |
+
---
|
77 |
+
|
78 |
+
## 🚀 How to Use
|
79 |
+
|
80 |
+
### 🔧 Install Dependencies
|
81 |
+
|
82 |
+
```bash
|
83 |
+
pip install torch torchvision albumentations scikit-learn matplotlib seaborn
|
84 |
+
import torch
|
85 |
+
from torchvision import transforms
|
86 |
+
from PIL import Image
|
87 |
+
from model import ImprovedPneumoniaCNN # make sure model is defined/imported
|
88 |
+
|
89 |
+
# Load model
|
90 |
+
model = ImprovedPneumoniaCNN()
|
91 |
+
model.load_state_dict(torch.load("improved_pneumonia_cnn.pth", map_location=torch.device('cpu')))
|
92 |
+
model.eval()
|
93 |
+
|
94 |
+
# Preprocess image
|
95 |
+
transform = transforms.Compose([
|
96 |
+
transforms.Grayscale(),
|
97 |
+
transforms.Resize((224, 224)),
|
98 |
+
transforms.ToTensor(),
|
99 |
+
])
|
100 |
+
|
101 |
+
img = Image.open("path_to_chest_xray.jpg")
|
102 |
+
img_tensor = transform(img).unsqueeze(0)
|
103 |
+
|
104 |
+
# Predict
|
105 |
+
with torch.no_grad():
|
106 |
+
output = model(img_tensor)
|
107 |
+
prediction = torch.sigmoid(output).item()
|
108 |
+
print("Pneumonia" if prediction > 0.5 else "Normal")
|
109 |
+
```
|
110 |
+
---
|
111 |
+
|
112 |
+
## Contributors
|
113 |
+
- [Thiyaga158](https://huggingface.co/Thiyaga158)
|
114 |
+
|
115 |
+
---
|
116 |
+
|
117 |
+
## License
|
118 |
+
|
119 |
+
This model is licensed under [CC BY-NC 3.0](https://creativecommons.org/licenses/by-nc/3.0/).
|
120 |
+
For research and educational use only.
|
121 |
+
|
122 |
---
|