Create gradioapp.py
Browse files- gradioapp.py +45 -0
gradioapp.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import torchaudio
|
| 4 |
+
from transformers import AutoProcessor, AutoModelForAudioClassification
|
| 5 |
+
from transformers import AutoFeatureExtractor
|
| 6 |
+
|
| 7 |
+
# Load model directly
|
| 8 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("ThomasR/facebook_wav2vec2-large_October_03_2023_05h34PM")
|
| 9 |
+
model = AutoModelForAudioClassification.from_pretrained("ThomasR/facebook_wav2vec2-large_October_03_2023_05h34PM")
|
| 10 |
+
|
| 11 |
+
label2id={'fake':0, 'real':1}
|
| 12 |
+
id2label = {v:k for k,v in label2id.items()}
|
| 13 |
+
|
| 14 |
+
def predict(audio_path):
|
| 15 |
+
wavform, sample_rate = sf.read(audio_path)
|
| 16 |
+
|
| 17 |
+
inputs = feature_extractor(
|
| 18 |
+
wavform, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt", max_length=16000, truncation=True, padding=True
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
with torch.no_grad():
|
| 22 |
+
logits = model(**inputs).logits
|
| 23 |
+
|
| 24 |
+
probabilities = torch.sigmoid(logits[0])
|
| 25 |
+
# labels is a one-hot array of shape (num_frames, num_speakers)
|
| 26 |
+
labels = (probabilities > 0.5).long()
|
| 27 |
+
|
| 28 |
+
pred_probs = list(probabilities.tolist())
|
| 29 |
+
# index of the max score
|
| 30 |
+
idx = pred_probs.index(max(pred_probs))
|
| 31 |
+
|
| 32 |
+
LABELS=list(id2label.values())
|
| 33 |
+
#get labels corresponding to max score
|
| 34 |
+
max_label = LABELS[idx]
|
| 35 |
+
results = {LABELS[i]: round(float(pred_probs[i]),4) for i in range(len(LABELS))}
|
| 36 |
+
|
| 37 |
+
return results
|
| 38 |
+
|
| 39 |
+
demo = gr.Interface(fn=predict,
|
| 40 |
+
inputs=gr.Audio(type="filepath"),
|
| 41 |
+
outputs="label",
|
| 42 |
+
cache_examples=False
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
demo.launch(debug=False)
|