Deepseek-Small-Stories / src /run_training.py
ThomasTheMaker's picture
Upload folder using huggingface_hub
01ae771 verified
"""
DeepSeek Children's Stories Training Script
Main training script for the DeepSeek model on children's stories
"""
import os
import sys
import argparse
import torch
from dataclasses import dataclass
from typing import Optional
# Add the src directory to Python path
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from model.deepseek import DeepSeek, DeepSeekConfig
from training.trainer import DeepSeekTrainer, create_deepseek_trainer
from data.data_processor import DeepSeekDataProcessor
@dataclass
class TrainingConfig:
"""Configuration for DeepSeek training"""
# Model configuration
vocab_size: int = 50257
n_layer: int = 6
n_head: int = 8
n_embd: int = 512
block_size: int = 1024
dropout: float = 0.1
bias: bool = True
# MLA configuration
use_mla: bool = True
mla_kv_heads: int = 4
mla_q_lora_rank: int = 32
mla_kv_lora_rank: int = 16
# MoE configuration
moe_num_experts: int = 4
moe_top_k: int = 2
moe_expert_capacity: float = 1.25
moe_aux_loss_coeff: float = 0.01
# Multi-token prediction
multi_token_predict: int = 0 # Predict next 2 tokens for efficiency
# Quantization
use_quantization: bool = False
quantization_bits: int = 8
# Training configuration
batch_size: int = 12
max_iters: int = 20000
eval_interval: int = 1000
eval_iters: int = 200
learning_rate: float = 6e-4
weight_decay: float = 0.1
warmup_iters: int = 2000
lr_decay_iters: int = 20000
min_lr: float = 6e-5
# System configuration
checkpoint_dir: str = 'checkpoints'
use_mixed_precision: bool = True
compile_model: bool = True
# Data configuration
dataset_name: str = "ajibawa-2023/Children-Stories-Collection"
data_dir: str = 'src/data'
def setup_environment():
"""Setup the training environment"""
print("Setting up DeepSeek Children's Stories training environment...")
# Check CUDA availability
if torch.cuda.is_available():
print(f"CUDA available: {torch.cuda.get_device_name(0)}")
print(f"CUDA memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f} GB")
else:
print("CUDA not available, using CPU")
# Create necessary directories
os.makedirs('checkpoints', exist_ok=True)
os.makedirs('lora_checkpoints', exist_ok=True)
os.makedirs('src/data', exist_ok=True)
print("Environment setup complete!")
def prepare_data():
"""Prepare the dataset for training"""
print("Preparing dataset...")
processor = DeepSeekDataProcessor()
data_files = processor.prepare_dataset()
print("Dataset preparation complete!")
return data_files
def create_model(config: TrainingConfig) -> DeepSeek:
"""Create the DeepSeek model"""
print("Creating DeepSeek model...")
# Create model configuration
model_config = DeepSeekConfig(
vocab_size=config.vocab_size,
n_layer=config.n_layer,
n_head=config.n_head,
n_embd=config.n_embd,
block_size=config.block_size,
dropout=config.dropout,
bias=config.bias,
use_mla=config.use_mla,
mla_kv_heads=config.mla_kv_heads,
mla_q_lora_rank=config.mla_q_lora_rank,
mla_kv_lora_rank=config.mla_kv_lora_rank,
moe_num_experts=config.moe_num_experts,
moe_top_k=config.moe_top_k,
moe_expert_capacity=config.moe_expert_capacity,
moe_aux_loss_coeff=config.moe_aux_loss_coeff,
multi_token_predict=config.multi_token_predict,
use_quantization=config.use_quantization,
quantization_bits=config.quantization_bits
)
# Create model
model = DeepSeek(model_config)
# Compile model if requested
if config.compile_model and hasattr(torch, 'compile'):
print("Compiling model with torch.compile...")
model = torch.compile(model)
# Print model info
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Model created successfully!")
print(f"Total parameters: {total_params:,}")
print(f"Trainable parameters: {trainable_params:,}")
print(f"Model configuration:")
print(f" - Layers: {config.n_layer}")
print(f" - Heads: {config.n_head}")
print(f" - Embedding dim: {config.n_embd}")
print(f" - MLA enabled: {config.use_mla}")
print(f" - MLA KV heads: {config.mla_kv_heads}")
print(f" - MoE experts: {config.moe_num_experts}")
print(f" - Multi-token prediction: {config.multi_token_predict}")
return model
def train_model(model: DeepSeek, config: TrainingConfig):
"""Train the DeepSeek model"""
print(f"[+] Starting training with config:")
print(f" - Model size: {sum(p.numel() for p in model.parameters()):,} parameters")
print(f" - Multi-token prediction: {config.multi_token_predict}")
print(f" - MoE experts: {config.moe_num_experts}")
print(f" - MLA enabled: {config.use_mla}")
# Setup device
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = model.to(device)
# Create optimizer
optimizer = torch.optim.AdamW(
model.parameters(),
lr=config.learning_rate,
weight_decay=config.weight_decay,
betas=(0.9, 0.95)
)
# Initialize trainer with individual parameters
trainer = DeepSeekTrainer(
model=model,
optimizer=optimizer,
device=device,
batch_size=config.batch_size,
max_iters=config.max_iters,
eval_interval=config.eval_interval,
eval_iters=config.eval_iters,
learning_rate=config.learning_rate,
weight_decay=config.weight_decay,
warmup_iters=config.warmup_iters,
lr_decay_iters=config.lr_decay_iters,
min_lr=config.min_lr,
checkpoint_dir=config.checkpoint_dir,
use_mixed_precision=config.use_mixed_precision
)
try:
# Start training
trainer.train()
print("[+] Training completed successfully!")
# Save final model
final_model_path = os.path.join(config.checkpoint_dir, "final_model.pt")
torch.save({
'model_state_dict': model.state_dict(),
'config': config,
'optimizer_state_dict': trainer.optimizer.state_dict(),
}, final_model_path)
print(f"[+] Final model saved to {final_model_path}")
except Exception as e:
print(f"[-] Training failed: {e}")
import traceback
traceback.print_exc()
raise
def main():
"""Main training function"""
parser = argparse.ArgumentParser(description='Train DeepSeek model on children\'s stories')
# Model configuration
parser.add_argument('--n-layer', type=int, default=6, help='Number of layers')
parser.add_argument('--n-head', type=int, default=8, help='Number of attention heads')
parser.add_argument('--n-embd', type=int, default=512, help='Embedding dimension')
parser.add_argument('--block-size', type=int, default=1024, help='Context window size')
# Training configuration
parser.add_argument('--batch-size', type=int, default=12, help='Batch size')
parser.add_argument('--max-iters', type=int, default=20000, help='Maximum iterations')
parser.add_argument('--learning-rate', type=float, default=6e-4, help='Learning rate')
parser.add_argument('--eval-interval', type=int, default=1000, help='Evaluation interval')
parser.add_argument('--eval-iters', type=int, default=200, help='Number of evaluation iterations')
parser.add_argument('--weight-decay', type=float, default=0.1, help='Weight decay')
parser.add_argument('--warmup-iters', type=int, default=2000, help='Warmup iterations')
parser.add_argument('--lr-decay-iters', type=int, default=20000, help='Learning rate decay iterations')
parser.add_argument('--min-lr', type=float, default=6e-5, help='Minimum learning rate')
# Advanced features
parser.add_argument('--moe-experts', type=int, default=4, help='Number of MoE experts')
parser.add_argument('--multi-token', type=int, default=2, help='Multi-token prediction')
parser.add_argument('--no-compile', action='store_true', help='Disable model compilation')
parser.add_argument('--no-mixed-precision', action='store_true', help='Disable mixed precision')
# Resume training
parser.add_argument('--resume', type=str, help='Resume from checkpoint')
args = parser.parse_args()
# Create configuration
config = TrainingConfig(
n_layer=args.n_layer,
n_head=args.n_head,
n_embd=args.n_embd,
block_size=args.block_size,
batch_size=args.batch_size,
max_iters=args.max_iters,
learning_rate=args.learning_rate,
eval_interval=args.eval_interval,
eval_iters=args.eval_iters,
weight_decay=args.weight_decay,
warmup_iters=args.warmup_iters,
lr_decay_iters=args.lr_decay_iters,
min_lr=args.min_lr,
moe_num_experts=args.moe_experts,
multi_token_predict=args.multi_token,
compile_model=not args.no_compile,
use_mixed_precision=not args.no_mixed_precision
)
print("DeepSeek Children's Stories Training")
print("=" * 50)
print(f"Configuration:")
print(f" - Model: {config.n_layer}L/{config.n_head}H/{config.n_embd}D")
print(f" - MoE: {config.moe_num_experts} experts")
print(f" - Multi-token: {config.multi_token_predict}")
print(f" - Batch size: {config.batch_size}")
print(f" - Max iterations: {config.max_iters}")
print(f" - Learning rate: {config.learning_rate}")
print(f" - Weight decay: {config.weight_decay}")
print(f" - Warmup iterations: {config.warmup_iters}")
print(f" - LR decay iterations: {config.lr_decay_iters}")
print(f" - Min learning rate: {config.min_lr}")
print("=" * 50)
# Setup environment
setup_environment()
# Prepare data
data_files = prepare_data()
# Create model
model = create_model(config)
# Resume from checkpoint if specified
if args.resume:
print(f"Resuming from checkpoint: {args.resume}")
checkpoint = torch.load(args.resume, map_location='cpu')
model.load_state_dict(checkpoint['model'])
print("Checkpoint loaded successfully!")
# Train model
train_model(model, config)
print("Training completed successfully!")
print("Best model saved to: checkpoints/best_model.pt")
if __name__ == "__main__":
main()