ThomasTheMaker's picture
Upload folder using huggingface_hub
01ae771 verified
"""
DeepSeek Trainer for Children's Stories
Advanced training with MLA, MoE, and multi-token prediction
"""
import torch
import numpy as np
from tqdm.auto import tqdm
from torch.optim.lr_scheduler import LinearLR, SequentialLR, CosineAnnealingLR
import matplotlib.pyplot as plt
import os
import datetime
import time
import shutil
import psutil
import math
import gc
import torch.nn as nn
from torch.nn import functional as F
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group
from typing import Dict, List, Optional, Tuple
class DeepSeekTrainer:
def __init__(self, model, optimizer, device, batch_size, max_iters, eval_interval,
eval_iters, learning_rate, weight_decay, warmup_iters, lr_decay_iters,
min_lr, checkpoint_dir='checkpoints', use_mixed_precision=True):
self.model = model
self.optimizer = optimizer
self.device = device
self.batch_size = batch_size
self.max_iters = max_iters
self.eval_interval = eval_interval
self.eval_iters = eval_iters
self.learning_rate = learning_rate
self.weight_decay = weight_decay
self.warmup_iters = warmup_iters
self.lr_decay_iters = lr_decay_iters
self.min_lr = min_lr
self.checkpoint_dir = checkpoint_dir
self.use_mixed_precision = use_mixed_precision
self.best_loss = float('inf')
# Training state
self.current_iter = 0
self.train_losses = []
self.val_losses = []
self.learning_rates = []
# Create checkpoint directory if it doesn't exist
os.makedirs(checkpoint_dir, exist_ok=True)
# Initialize gradient scaler for mixed precision training
if use_mixed_precision and device == 'cuda':
self.scaler = torch.cuda.amp.GradScaler()
else:
self.scaler = None
# Initialize training metrics
self.metrics = {
'train_loss': [],
'val_loss': [],
'learning_rates': [],
'grad_norm': [],
'memory_usage': [],
'moe_aux_loss': [],
'multi_token_loss': []
}
# Load data
self.data = self.load_data()
self.n = len(self.data)
def load_data(self):
"""Load the training data"""
try:
data_file = os.path.join('src', 'data', 'train.bin')
if not os.path.exists(data_file):
raise FileNotFoundError(f"Training data file not found at {data_file}")
# Load data as numpy array first
data = np.memmap(data_file, dtype=np.uint16, mode='r')
# Convert to tensor
data = torch.from_numpy(data.copy()) # Make a copy to ensure it's writable
return data
except Exception as e:
print(f"Error loading data: {str(e)}")
raise
def get_batch(self, split):
"""Get a batch of data"""
try:
# Generate random indices
ix = torch.randint(len(self.data) - self.model.config.block_size, (self.batch_size,))
# Get input sequences
x = torch.stack([self.data[i:i+self.model.config.block_size].long() for i in ix])
# Get target sequences (shifted by 1)
y = torch.stack([self.data[i+1:i+1+self.model.config.block_size].long() for i in ix])
# Move to device
x, y = x.to(self.device), y.to(self.device)
return x, y
except Exception as e:
print(f"Error in get_batch: {str(e)}")
raise
def get_lr(self, it):
"""Get learning rate for current iteration"""
# 1) linear warmup for warmup_iters steps
if it < self.warmup_iters:
return self.learning_rate * it / self.warmup_iters
# 2) if it > lr_decay_iters, return min learning rate
if it > self.lr_decay_iters:
return self.min_lr
# 3) in between, use cosine decay down to min learning rate
decay_ratio = (it - self.warmup_iters) / (self.lr_decay_iters - self.warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1
return self.min_lr + coeff * (self.learning_rate - self.min_lr)
def estimate_loss(self):
"""Estimate loss on validation set"""
out = {}
self.model.eval()
for split in ['train', 'val']:
losses = torch.zeros(self.eval_iters)
for k in range(self.eval_iters):
try:
X, Y = self.get_batch(split)
with torch.no_grad():
if self.scaler is not None:
with torch.cuda.amp.autocast():
logits, loss = self.model(X, Y)
else:
logits, loss = self.model(X, Y)
losses[k] = loss.item()
except Exception as e:
print(f"Error during evaluation: {str(e)}")
continue
out[split] = losses.mean()
self.model.train()
return out
def check_disk_space(self, required_space_mb=1000):
"""Check if there's enough disk space for saving the model"""
try:
# Get disk usage statistics
disk_usage = psutil.disk_usage('/')
free_space_mb = disk_usage.free / (1024 * 1024) # Convert to MB
if free_space_mb < required_space_mb:
print(f"Warning: Low disk space. Only {free_space_mb:.2f}MB free, {required_space_mb}MB required")
return False
return True
except Exception as e:
print(f"Warning: Could not check disk space: {e}")
return True # Continue anyway if we can't check
def save_checkpoint(self, iter_num, loss, is_best=False):
"""Save model checkpoint"""
try:
checkpoint = {
'model': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'iter_num': iter_num,
'loss': loss,
'config': self.model.config,
'train_losses': self.train_losses,
'val_losses': self.val_losses,
'learning_rates': self.learning_rates,
'metrics': self.metrics,
'best_loss': self.best_loss
}
checkpoint_path = os.path.join(self.checkpoint_dir, f'checkpoint_{iter_num}.pt')
torch.save(checkpoint, checkpoint_path)
if is_best:
best_path = os.path.join(self.checkpoint_dir, 'best_model.pt')
torch.save(checkpoint, best_path)
print(f"Saved best model with loss {loss:.4f}")
print(f"Saved checkpoint to {checkpoint_path}")
return True
except Exception as e:
print(f"Error saving checkpoint: {str(e)}")
return False
def load_checkpoint(self, checkpoint_path):
"""Load model checkpoint with error handling"""
try:
checkpoint = torch.load(checkpoint_path, map_location=self.device)
self.model.load_state_dict(checkpoint['model'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
self.current_iter = checkpoint['iter_num']
self.best_loss = checkpoint['loss']
self.train_losses = checkpoint.get('train_losses', [])
self.val_losses = checkpoint.get('val_losses', [])
self.learning_rates = checkpoint.get('learning_rates', [])
self.metrics = checkpoint.get('metrics', self.metrics)
print(f"Successfully loaded checkpoint from iteration {self.current_iter}")
return True
except Exception as e:
print(f"Error loading checkpoint: {e}")
return False
def train(self):
"""Train the DeepSeek model"""
print(f"DeepSeek Training started at: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
print(f"Model: {self.model.config.n_layer} layers, {self.model.config.n_head} heads, {self.model.config.n_embd} dims")
print(f"MLA: {self.model.config.mla_kv_heads} KV heads, MoE: {self.model.config.moe_num_experts} experts")
print(f"Multi-token prediction: {self.model.config.multi_token_predict} tokens")
start_time = time.time()
try:
# Initialize training
X, Y = self.get_batch('train')
best_loss = float('inf')
current_loss = None
for iter_num in range(self.current_iter, self.max_iters):
self.current_iter = iter_num
# Determine and set the learning rate for this iteration
lr = self.get_lr(iter_num)
for param_group in self.optimizer.param_groups:
param_group['lr'] = lr
# Forward pass with mixed precision
if self.scaler is not None:
with torch.cuda.amp.autocast():
logits, loss = self.model(X, Y)
else:
logits, loss = self.model(X, Y)
# Backward pass
if self.scaler is not None:
self.scaler.scale(loss).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
else:
loss.backward()
self.optimizer.step()
self.optimizer.zero_grad(set_to_none=True)
# Get new batch
X, Y = self.get_batch('train')
# Track metrics
current_loss = loss.item()
self.train_losses.append(current_loss)
self.learning_rates.append(lr)
# Update best loss
if current_loss < best_loss:
best_loss = current_loss
# Evaluation
if iter_num % self.eval_interval == 0:
losses = self.estimate_loss()
self.val_losses.append(losses['val'])
# Save checkpoint if it's the best so far
if losses['val'] < self.best_loss:
self.best_loss = losses['val']
self.save_checkpoint(iter_num, losses['val'], is_best=True)
# Regular checkpoint saving
if iter_num % (self.eval_interval * 5) == 0:
self.save_checkpoint(iter_num, losses['val'])
# Print progress
elapsed = time.time() - start_time
print(f"iter {iter_num}: train_loss {current_loss:.4f}, val_loss {losses['val']:.4f}, "
f"lr {lr:.2e}, time {elapsed:.2f}s")
# Memory usage
if self.device == 'cuda':
memory_used = torch.cuda.memory_allocated() / 1024**3
print(f"GPU memory: {memory_used:.2f} GB")
# Memory cleanup
if iter_num % 100 == 0:
gc.collect()
if self.device == 'cuda':
torch.cuda.empty_cache()
# Final checkpoint
self.save_checkpoint(self.max_iters, current_loss)
# Plot training metrics
self.plot_metrics()
print(f"Training completed in {time.time() - start_time:.2f} seconds")
except Exception as e:
print(f"Error during training: {str(e)}")
# Save emergency checkpoint
if current_loss is not None:
self.save_checkpoint(self.current_iter, current_loss)
raise
def plot_losses(self, train_losses, val_losses):
"""Plot training and validation losses"""
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(train_losses, label='Training Loss')
plt.plot(val_losses, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.xlabel('Iteration')
plt.ylabel('Loss')
plt.legend()
plt.grid(True)
plt.subplot(1, 2, 2)
plt.plot(self.learning_rates)
plt.title('Learning Rate Schedule')
plt.xlabel('Iteration')
plt.ylabel('Learning Rate')
plt.grid(True)
plt.tight_layout()
plt.savefig('training_metrics.png', dpi=300, bbox_inches='tight')
plt.close()
def plot_metrics(self):
"""Plot comprehensive training metrics"""
if not self.train_losses or not self.val_losses:
print("No metrics to plot")
return
fig, axes = plt.subplots(2, 2, figsize=(15, 10))
# Training and validation loss
axes[0, 0].plot(self.train_losses, label='Training Loss', alpha=0.7)
axes[0, 0].plot(self.val_losses, label='Validation Loss', alpha=0.7)
axes[0, 0].set_title('Training and Validation Loss')
axes[0, 0].set_xlabel('Iteration')
axes[0, 0].set_ylabel('Loss')
axes[0, 0].legend()
axes[0, 0].grid(True)
# Learning rate
axes[0, 1].plot(self.learning_rates)
axes[0, 1].set_title('Learning Rate Schedule')
axes[0, 1].set_xlabel('Iteration')
axes[0, 1].set_ylabel('Learning Rate')
axes[0, 1].grid(True)
# Memory usage
if self.metrics['memory_usage']:
axes[1, 0].plot(self.metrics['memory_usage'])
axes[1, 0].set_title('GPU Memory Usage')
axes[1, 0].set_xlabel('Iteration')
axes[1, 0].set_ylabel('Memory (GB)')
axes[1, 0].grid(True)
# Gradient norm
if self.metrics['grad_norm']:
axes[1, 1].plot(self.metrics['grad_norm'])
axes[1, 1].set_title('Gradient Norm')
axes[1, 1].set_xlabel('Iteration')
axes[1, 1].set_ylabel('Norm')
axes[1, 1].grid(True)
plt.tight_layout()
plt.savefig('deepseek_training_metrics.png', dpi=300, bbox_inches='tight')
plt.close()
print("Training metrics saved to deepseek_training_metrics.png")
def create_deepseek_trainer(model, config):
"""Create a DeepSeek trainer with the given configuration"""
# Optimizer
optimizer = torch.optim.AdamW(
model.parameters(),
lr=config.learning_rate,
weight_decay=config.weight_decay,
betas=(0.9, 0.95)
)
# Device
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = model.to(device)
# Trainer
trainer = DeepSeekTrainer(
model=model,
optimizer=optimizer,
device=device,
batch_size=config.batch_size,
max_iters=config.max_iters,
eval_interval=config.eval_interval,
eval_iters=config.eval_iters,
learning_rate=config.learning_rate,
weight_decay=config.weight_decay,
warmup_iters=config.warmup_iters,
lr_decay_iters=config.lr_decay_iters,
min_lr=config.min_lr,
checkpoint_dir=config.checkpoint_dir,
use_mixed_precision=config.use_mixed_precision
)
return trainer