|
""" |
|
DeepSeek Trainer for Children's Stories |
|
Advanced training with MLA, MoE, and multi-token prediction |
|
""" |
|
|
|
import torch |
|
import numpy as np |
|
from tqdm.auto import tqdm |
|
from torch.optim.lr_scheduler import LinearLR, SequentialLR, CosineAnnealingLR |
|
import matplotlib.pyplot as plt |
|
import os |
|
import datetime |
|
import time |
|
import shutil |
|
import psutil |
|
import math |
|
import gc |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
from torch.utils.data.distributed import DistributedSampler |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
from torch.distributed import init_process_group, destroy_process_group |
|
from typing import Dict, List, Optional, Tuple |
|
|
|
class DeepSeekTrainer: |
|
def __init__(self, model, optimizer, device, batch_size, max_iters, eval_interval, |
|
eval_iters, learning_rate, weight_decay, warmup_iters, lr_decay_iters, |
|
min_lr, checkpoint_dir='checkpoints', use_mixed_precision=True): |
|
self.model = model |
|
self.optimizer = optimizer |
|
self.device = device |
|
self.batch_size = batch_size |
|
self.max_iters = max_iters |
|
self.eval_interval = eval_interval |
|
self.eval_iters = eval_iters |
|
self.learning_rate = learning_rate |
|
self.weight_decay = weight_decay |
|
self.warmup_iters = warmup_iters |
|
self.lr_decay_iters = lr_decay_iters |
|
self.min_lr = min_lr |
|
self.checkpoint_dir = checkpoint_dir |
|
self.use_mixed_precision = use_mixed_precision |
|
self.best_loss = float('inf') |
|
|
|
|
|
self.current_iter = 0 |
|
self.train_losses = [] |
|
self.val_losses = [] |
|
self.learning_rates = [] |
|
|
|
|
|
os.makedirs(checkpoint_dir, exist_ok=True) |
|
|
|
|
|
if use_mixed_precision and device == 'cuda': |
|
self.scaler = torch.cuda.amp.GradScaler() |
|
else: |
|
self.scaler = None |
|
|
|
|
|
self.metrics = { |
|
'train_loss': [], |
|
'val_loss': [], |
|
'learning_rates': [], |
|
'grad_norm': [], |
|
'memory_usage': [], |
|
'moe_aux_loss': [], |
|
'multi_token_loss': [] |
|
} |
|
|
|
|
|
self.data = self.load_data() |
|
self.n = len(self.data) |
|
|
|
def load_data(self): |
|
"""Load the training data""" |
|
try: |
|
data_file = os.path.join('src', 'data', 'train.bin') |
|
if not os.path.exists(data_file): |
|
raise FileNotFoundError(f"Training data file not found at {data_file}") |
|
|
|
|
|
data = np.memmap(data_file, dtype=np.uint16, mode='r') |
|
|
|
data = torch.from_numpy(data.copy()) |
|
return data |
|
except Exception as e: |
|
print(f"Error loading data: {str(e)}") |
|
raise |
|
|
|
def get_batch(self, split): |
|
"""Get a batch of data""" |
|
try: |
|
|
|
ix = torch.randint(len(self.data) - self.model.config.block_size, (self.batch_size,)) |
|
|
|
|
|
x = torch.stack([self.data[i:i+self.model.config.block_size].long() for i in ix]) |
|
|
|
y = torch.stack([self.data[i+1:i+1+self.model.config.block_size].long() for i in ix]) |
|
|
|
|
|
x, y = x.to(self.device), y.to(self.device) |
|
return x, y |
|
except Exception as e: |
|
print(f"Error in get_batch: {str(e)}") |
|
raise |
|
|
|
def get_lr(self, it): |
|
"""Get learning rate for current iteration""" |
|
|
|
if it < self.warmup_iters: |
|
return self.learning_rate * it / self.warmup_iters |
|
|
|
if it > self.lr_decay_iters: |
|
return self.min_lr |
|
|
|
decay_ratio = (it - self.warmup_iters) / (self.lr_decay_iters - self.warmup_iters) |
|
assert 0 <= decay_ratio <= 1 |
|
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) |
|
return self.min_lr + coeff * (self.learning_rate - self.min_lr) |
|
|
|
def estimate_loss(self): |
|
"""Estimate loss on validation set""" |
|
out = {} |
|
self.model.eval() |
|
for split in ['train', 'val']: |
|
losses = torch.zeros(self.eval_iters) |
|
for k in range(self.eval_iters): |
|
try: |
|
X, Y = self.get_batch(split) |
|
with torch.no_grad(): |
|
if self.scaler is not None: |
|
with torch.cuda.amp.autocast(): |
|
logits, loss = self.model(X, Y) |
|
else: |
|
logits, loss = self.model(X, Y) |
|
losses[k] = loss.item() |
|
except Exception as e: |
|
print(f"Error during evaluation: {str(e)}") |
|
continue |
|
out[split] = losses.mean() |
|
self.model.train() |
|
return out |
|
|
|
def check_disk_space(self, required_space_mb=1000): |
|
"""Check if there's enough disk space for saving the model""" |
|
try: |
|
|
|
disk_usage = psutil.disk_usage('/') |
|
free_space_mb = disk_usage.free / (1024 * 1024) |
|
|
|
if free_space_mb < required_space_mb: |
|
print(f"Warning: Low disk space. Only {free_space_mb:.2f}MB free, {required_space_mb}MB required") |
|
return False |
|
return True |
|
except Exception as e: |
|
print(f"Warning: Could not check disk space: {e}") |
|
return True |
|
|
|
def save_checkpoint(self, iter_num, loss, is_best=False): |
|
"""Save model checkpoint""" |
|
try: |
|
checkpoint = { |
|
'model': self.model.state_dict(), |
|
'optimizer': self.optimizer.state_dict(), |
|
'iter_num': iter_num, |
|
'loss': loss, |
|
'config': self.model.config, |
|
'train_losses': self.train_losses, |
|
'val_losses': self.val_losses, |
|
'learning_rates': self.learning_rates, |
|
'metrics': self.metrics, |
|
'best_loss': self.best_loss |
|
} |
|
checkpoint_path = os.path.join(self.checkpoint_dir, f'checkpoint_{iter_num}.pt') |
|
torch.save(checkpoint, checkpoint_path) |
|
|
|
if is_best: |
|
best_path = os.path.join(self.checkpoint_dir, 'best_model.pt') |
|
torch.save(checkpoint, best_path) |
|
print(f"Saved best model with loss {loss:.4f}") |
|
|
|
print(f"Saved checkpoint to {checkpoint_path}") |
|
return True |
|
except Exception as e: |
|
print(f"Error saving checkpoint: {str(e)}") |
|
return False |
|
|
|
def load_checkpoint(self, checkpoint_path): |
|
"""Load model checkpoint with error handling""" |
|
try: |
|
checkpoint = torch.load(checkpoint_path, map_location=self.device) |
|
self.model.load_state_dict(checkpoint['model']) |
|
self.optimizer.load_state_dict(checkpoint['optimizer']) |
|
self.current_iter = checkpoint['iter_num'] |
|
self.best_loss = checkpoint['loss'] |
|
self.train_losses = checkpoint.get('train_losses', []) |
|
self.val_losses = checkpoint.get('val_losses', []) |
|
self.learning_rates = checkpoint.get('learning_rates', []) |
|
self.metrics = checkpoint.get('metrics', self.metrics) |
|
print(f"Successfully loaded checkpoint from iteration {self.current_iter}") |
|
return True |
|
except Exception as e: |
|
print(f"Error loading checkpoint: {e}") |
|
return False |
|
|
|
def train(self): |
|
"""Train the DeepSeek model""" |
|
print(f"DeepSeek Training started at: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}") |
|
print(f"Model: {self.model.config.n_layer} layers, {self.model.config.n_head} heads, {self.model.config.n_embd} dims") |
|
print(f"MLA: {self.model.config.mla_kv_heads} KV heads, MoE: {self.model.config.moe_num_experts} experts") |
|
print(f"Multi-token prediction: {self.model.config.multi_token_predict} tokens") |
|
start_time = time.time() |
|
|
|
try: |
|
|
|
X, Y = self.get_batch('train') |
|
best_loss = float('inf') |
|
current_loss = None |
|
|
|
for iter_num in range(self.current_iter, self.max_iters): |
|
self.current_iter = iter_num |
|
|
|
|
|
lr = self.get_lr(iter_num) |
|
for param_group in self.optimizer.param_groups: |
|
param_group['lr'] = lr |
|
|
|
|
|
if self.scaler is not None: |
|
with torch.cuda.amp.autocast(): |
|
logits, loss = self.model(X, Y) |
|
else: |
|
logits, loss = self.model(X, Y) |
|
|
|
|
|
if self.scaler is not None: |
|
self.scaler.scale(loss).backward() |
|
self.scaler.step(self.optimizer) |
|
self.scaler.update() |
|
else: |
|
loss.backward() |
|
self.optimizer.step() |
|
|
|
self.optimizer.zero_grad(set_to_none=True) |
|
|
|
|
|
X, Y = self.get_batch('train') |
|
|
|
|
|
current_loss = loss.item() |
|
self.train_losses.append(current_loss) |
|
self.learning_rates.append(lr) |
|
|
|
|
|
if current_loss < best_loss: |
|
best_loss = current_loss |
|
|
|
|
|
if iter_num % self.eval_interval == 0: |
|
losses = self.estimate_loss() |
|
self.val_losses.append(losses['val']) |
|
|
|
|
|
if losses['val'] < self.best_loss: |
|
self.best_loss = losses['val'] |
|
self.save_checkpoint(iter_num, losses['val'], is_best=True) |
|
|
|
|
|
if iter_num % (self.eval_interval * 5) == 0: |
|
self.save_checkpoint(iter_num, losses['val']) |
|
|
|
|
|
elapsed = time.time() - start_time |
|
print(f"iter {iter_num}: train_loss {current_loss:.4f}, val_loss {losses['val']:.4f}, " |
|
f"lr {lr:.2e}, time {elapsed:.2f}s") |
|
|
|
|
|
if self.device == 'cuda': |
|
memory_used = torch.cuda.memory_allocated() / 1024**3 |
|
print(f"GPU memory: {memory_used:.2f} GB") |
|
|
|
|
|
if iter_num % 100 == 0: |
|
gc.collect() |
|
if self.device == 'cuda': |
|
torch.cuda.empty_cache() |
|
|
|
|
|
self.save_checkpoint(self.max_iters, current_loss) |
|
|
|
|
|
self.plot_metrics() |
|
|
|
print(f"Training completed in {time.time() - start_time:.2f} seconds") |
|
|
|
except Exception as e: |
|
print(f"Error during training: {str(e)}") |
|
|
|
if current_loss is not None: |
|
self.save_checkpoint(self.current_iter, current_loss) |
|
raise |
|
|
|
def plot_losses(self, train_losses, val_losses): |
|
"""Plot training and validation losses""" |
|
plt.figure(figsize=(12, 4)) |
|
|
|
plt.subplot(1, 2, 1) |
|
plt.plot(train_losses, label='Training Loss') |
|
plt.plot(val_losses, label='Validation Loss') |
|
plt.title('Training and Validation Loss') |
|
plt.xlabel('Iteration') |
|
plt.ylabel('Loss') |
|
plt.legend() |
|
plt.grid(True) |
|
|
|
plt.subplot(1, 2, 2) |
|
plt.plot(self.learning_rates) |
|
plt.title('Learning Rate Schedule') |
|
plt.xlabel('Iteration') |
|
plt.ylabel('Learning Rate') |
|
plt.grid(True) |
|
|
|
plt.tight_layout() |
|
plt.savefig('training_metrics.png', dpi=300, bbox_inches='tight') |
|
plt.close() |
|
|
|
def plot_metrics(self): |
|
"""Plot comprehensive training metrics""" |
|
if not self.train_losses or not self.val_losses: |
|
print("No metrics to plot") |
|
return |
|
|
|
fig, axes = plt.subplots(2, 2, figsize=(15, 10)) |
|
|
|
|
|
axes[0, 0].plot(self.train_losses, label='Training Loss', alpha=0.7) |
|
axes[0, 0].plot(self.val_losses, label='Validation Loss', alpha=0.7) |
|
axes[0, 0].set_title('Training and Validation Loss') |
|
axes[0, 0].set_xlabel('Iteration') |
|
axes[0, 0].set_ylabel('Loss') |
|
axes[0, 0].legend() |
|
axes[0, 0].grid(True) |
|
|
|
|
|
axes[0, 1].plot(self.learning_rates) |
|
axes[0, 1].set_title('Learning Rate Schedule') |
|
axes[0, 1].set_xlabel('Iteration') |
|
axes[0, 1].set_ylabel('Learning Rate') |
|
axes[0, 1].grid(True) |
|
|
|
|
|
if self.metrics['memory_usage']: |
|
axes[1, 0].plot(self.metrics['memory_usage']) |
|
axes[1, 0].set_title('GPU Memory Usage') |
|
axes[1, 0].set_xlabel('Iteration') |
|
axes[1, 0].set_ylabel('Memory (GB)') |
|
axes[1, 0].grid(True) |
|
|
|
|
|
if self.metrics['grad_norm']: |
|
axes[1, 1].plot(self.metrics['grad_norm']) |
|
axes[1, 1].set_title('Gradient Norm') |
|
axes[1, 1].set_xlabel('Iteration') |
|
axes[1, 1].set_ylabel('Norm') |
|
axes[1, 1].grid(True) |
|
|
|
plt.tight_layout() |
|
plt.savefig('deepseek_training_metrics.png', dpi=300, bbox_inches='tight') |
|
plt.close() |
|
|
|
print("Training metrics saved to deepseek_training_metrics.png") |
|
|
|
|
|
def create_deepseek_trainer(model, config): |
|
"""Create a DeepSeek trainer with the given configuration""" |
|
|
|
optimizer = torch.optim.AdamW( |
|
model.parameters(), |
|
lr=config.learning_rate, |
|
weight_decay=config.weight_decay, |
|
betas=(0.9, 0.95) |
|
) |
|
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
model = model.to(device) |
|
|
|
|
|
trainer = DeepSeekTrainer( |
|
model=model, |
|
optimizer=optimizer, |
|
device=device, |
|
batch_size=config.batch_size, |
|
max_iters=config.max_iters, |
|
eval_interval=config.eval_interval, |
|
eval_iters=config.eval_iters, |
|
learning_rate=config.learning_rate, |
|
weight_decay=config.weight_decay, |
|
warmup_iters=config.warmup_iters, |
|
lr_decay_iters=config.lr_decay_iters, |
|
min_lr=config.min_lr, |
|
checkpoint_dir=config.checkpoint_dir, |
|
use_mixed_precision=config.use_mixed_precision |
|
) |
|
|
|
return trainer |