--- license: apache-2.0 --- # ReplaceMe: Training-Free Transformer Pruning via Layer Removal & Linear Transformations [![arXiv](https://img.shields.io/badge/arXiv-2310.12345-b31b1b.svg)](https://arxiv.org/abs/2505.02819) [![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://opensource.org/licenses/Apache-2.0) ![ReplaceMe Logo](./figs/logo2.jpg) ## Model Description ReplaceMe is a novel method for transformer model compression that enables **training-free** block/layer pruning while maintaining model performance through linear transformations. The approach: - Identifies and removes block of layers - Applies mathematically-derived transformations to preserve information flow - Requires no fine-tuning or retraining - Works with standard transformer architectures (The LTs are merged with the original model weights) ## Key Features - 🚀 **Zero-Training Pruning**: Remove layers without any fine-tuning - 🧠 **Performance Preservation**: <8% accuracy drop in most cases - ⚡ **Instant Speedup**: less blocks -> faster inference + less memory - 🔌 **Plug-and-Play**: Works with existing HuggingFace models ## 🔥 Performance Comparison of Pruning Methods (Llama 2 7B, 25% Compression) | Method | num_pruned_layers | Dataset | State | race 🏁 | winogrande 🎲 | piqa 🧠 | boolq ❓ | openbookqa 📖 | sciq 🔬 | lambada_openai 🦙 | ppl | Avg-acc 📊 | |-----------------------|-------------------|------------|---------------|--------|--------------|--------|---------|--------------|--------|------------------|-----------|------------| | | | | | acc | acc | acc_norm | acc | acc_norm | acc_norm | acc | | | | **Llama 3.1** (baseline) | - | - | - | 0.450 | 0.779 | 0.810 | 0.842 | 0.430 | 0.961 | 0.732 | 3.404 | **0.712** | | **UIDL*** | 8 | slim_orca | no training | 0.341 | 0.719 | 0.690 | 0.773 | 0.310 | 0.719 | 0.087 | 932.000 | 0.592 | | **ReplaceMe** (Ours) ✅ | 8 | slim_orca | no training | 0.406 | **0.742** 🏆 | 0.706 | 0.830 | 0.338 | 0.901 | 0.471 | 16.760 | 0.654 | | **ReplaceMe** (Ours) ❌ | 8 | slim_orca | SFT | **0.431** 🏆 | 0.716 | **0.728** 🏆 | **0.849** 🏆 | **0.378** 🏆 | **0.912** 🏆 | **0.697** 🏆 | 4.04 🏆 | **0.669** 🏆 | **Key:** - 🏆 Best performance in column - ✅ Training-free (our methods) - ❌ Requires training **Metrics Explained:** - **Bold**: Best training-free results - All numbers are accuracy scores > 🔥 **Our Healed model can acheive 94.0% of baseline performance after healing on 1B tokens!** ## Installation ```bash pip install replaceme # or git clone https://github.com/mts-ai/ReplaceMe cd ReplaceMe pip install -e . ``` ## Basic Usage ``` # LSTSQ method (recommended) run_replaceme --config ./reproduce/Replace_Me_pipeline_lstsq.yaml # Cosine similarity method run_replaceme --config ./reproduce/Replace_Me_pipeline_cosine.yaml ``` There are many parameters you can play with, visit our repo and dscover 🔥🔥 ## Load Model As we said we are merging the LTs with the original transformer architecture so you just do it as usual ```python ## EXAMPLE from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "MTSAIR/Llama3.1-6B-ReplaceMe-Healed" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "What is ReplaceME pruning method?!" messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) output = model.generate( **model_inputs, max_new_tokens=512 ) response = tokenizer.batch_decode(output, skip_special_tokens=True)[0] ``` # Citation If you use ReplaceMe in your research, please cite our paper: ```bibtex @article{shopkhoev2025replaceme0, title = {ReplaceMe: Network Simplification via Layer Pruning and Linear Transformations}, author = {Dmitriy Shopkhoev and Ammar Ali and Magauiya Zhussip and Valentin Malykh and Stamatios Lefkimmiatis and Nikos Komodakis and Sergey Zagoruyko}, year = {2025}, journal = {arXiv preprint arXiv: 2505.02819} } ```