File size: 2,672 Bytes
02f258c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
base_model: ntu-spml/distilhubert
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
type: audio-classification
name: Audio Classification
dataset:
name: GTZAN
type: marsyas/gtzan
split: None
metrics:
- type: accuracy
value: 0.9319319319319319
name: Accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2387
- Accuracy: 0.9319
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.7644 | 1.0 | 167 | 1.7832 | 0.3554 |
| 1.2856 | 2.0 | 334 | 1.4226 | 0.4745 |
| 1.2123 | 3.0 | 501 | 1.0047 | 0.6737 |
| 0.6613 | 4.0 | 668 | 0.8091 | 0.6987 |
| 0.6442 | 5.0 | 835 | 0.6713 | 0.7858 |
| 0.7172 | 6.0 | 1002 | 0.5749 | 0.8238 |
| 0.5394 | 7.0 | 1169 | 0.5079 | 0.8408 |
| 0.3853 | 8.0 | 1336 | 0.4574 | 0.8539 |
| 0.5441 | 9.0 | 1503 | 0.3729 | 0.8869 |
| 0.5062 | 10.0 | 1670 | 0.3319 | 0.9009 |
| 0.3955 | 11.0 | 1837 | 0.3745 | 0.8849 |
| 0.3112 | 12.0 | 2004 | 0.2752 | 0.9289 |
| 0.2887 | 13.0 | 2171 | 0.2544 | 0.9289 |
| 0.2038 | 14.0 | 2338 | 0.2344 | 0.9329 |
| 0.2374 | 15.0 | 2505 | 0.2387 | 0.9319 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
## Training procedure
### Framework versions
- PEFT 0.6.2
|