Upload folder using huggingface_hub
Browse files- README.md +107 -0
- config.json +28 -0
- generation_config.json +13 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +40 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
tags:
|
7 |
+
- chat
|
8 |
+
---
|
9 |
+
|
10 |
+
|
11 |
+
# Qwen2-Math-1.5B-Instruct
|
12 |
+
|
13 |
+
> [!Warning]
|
14 |
+
> <div align="center">
|
15 |
+
> <b>
|
16 |
+
> 🚨 Temporarily this model mainly supports English. We will release bilingual (English & Chinese) models soon!
|
17 |
+
> </b>
|
18 |
+
> </div>
|
19 |
+
|
20 |
+
## Introduction
|
21 |
+
|
22 |
+
Over the past year, we have dedicated significant effort to researching and enhancing the reasoning capabilities of large language models, with a particular focus on their ability to solve arithmetic and mathematical problems. Today, we are delighted to introduce a serise of math-specific large language models of our Qwen2 series, Qwen2-Math and Qwen2-Math-Instruct-1.5B/7B/72B. Qwen2-Math is a series of specialized math language models built upon the Qwen2 LLMs, which significantly outperforms the mathematical capabilities of open-source models and even closed-source models (e.g., GPT4o). We hope that Qwen2-Math can contribute to the scientific community for solving advanced mathematical problems that require complex, multi-step logical reasoning.
|
23 |
+
|
24 |
+
|
25 |
+
## Model Details
|
26 |
+
|
27 |
+
|
28 |
+
For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen2-math/) and [GitHub repo](https://github.com/QwenLM/Qwen2-Math).
|
29 |
+
|
30 |
+
|
31 |
+
## Requirements
|
32 |
+
* `transformers>=4.40.0` for Qwen2-Math models. The latest version is recommended.
|
33 |
+
|
34 |
+
> [!Warning]
|
35 |
+
> <div align="center">
|
36 |
+
> <b>
|
37 |
+
> 🚨 This is a must because `transformers` integrated Qwen2 codes since `4.37.0`.
|
38 |
+
> </b>
|
39 |
+
> </div>
|
40 |
+
|
41 |
+
For requirements on GPU memory and the respective throughput, see similar results of Qwen2 [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
|
42 |
+
|
43 |
+
## Quick Start
|
44 |
+
|
45 |
+
> [!Important]
|
46 |
+
>
|
47 |
+
> **Qwen2-Math-1.5B-Instruct** is an instruction model for chatting;
|
48 |
+
>
|
49 |
+
> **Qwen2-Math-1.5B** is a base model typically used for completion and few-shot inference, serving as a better starting point for fine-tuning.
|
50 |
+
>
|
51 |
+
|
52 |
+
### 🤗 Hugging Face Transformers
|
53 |
+
|
54 |
+
Qwen2-Math can be deployed and inferred in the same way as [Qwen2](https://github.com/QwenLM/Qwen2). Here we show a code snippet to show you how to use the chat model with `transformers`:
|
55 |
+
|
56 |
+
```python
|
57 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
58 |
+
|
59 |
+
model_name = "Qwen/Qwen2-Math-1.5B-Instruct"
|
60 |
+
device = "cuda" # the device to load the model onto
|
61 |
+
|
62 |
+
model = AutoModelForCausalLM.from_pretrained(
|
63 |
+
model_name,
|
64 |
+
torch_dtype="auto",
|
65 |
+
device_map="auto"
|
66 |
+
)
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
68 |
+
|
69 |
+
prompt = "Find the value of $x$ that satisfies the equation $4x+5 = 6x+7$."
|
70 |
+
messages = [
|
71 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
72 |
+
{"role": "user", "content": prompt}
|
73 |
+
]
|
74 |
+
text = tokenizer.apply_chat_template(
|
75 |
+
messages,
|
76 |
+
tokenize=False,
|
77 |
+
add_generation_prompt=True
|
78 |
+
)
|
79 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
80 |
+
|
81 |
+
generated_ids = model.generate(
|
82 |
+
**model_inputs,
|
83 |
+
max_new_tokens=512
|
84 |
+
)
|
85 |
+
generated_ids = [
|
86 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
87 |
+
]
|
88 |
+
|
89 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
90 |
+
```
|
91 |
+
|
92 |
+
### 🤖 ModelScope
|
93 |
+
We strongly advise users, especially those in mainland China, to use ModelScope. `snapshot_download` can help you solve issues concerning downloading checkpoints.
|
94 |
+
|
95 |
+
|
96 |
+
## Citation
|
97 |
+
|
98 |
+
If you find our work helpful, feel free to give us a citation.
|
99 |
+
|
100 |
+
```
|
101 |
+
@article{yang2024qwen2,
|
102 |
+
title={Qwen2 technical report},
|
103 |
+
author={Yang, An and Yang, Baosong and Hui, Binyuan and Zheng, Bo and Yu, Bowen and Zhou, Chang and Li, Chengpeng and Li, Chengyuan and Liu, Dayiheng and Huang, Fei and others},
|
104 |
+
journal={arXiv preprint arXiv:2407.10671},
|
105 |
+
year={2024}
|
106 |
+
}
|
107 |
+
```
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 151643,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 1536,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 8960,
|
12 |
+
"max_position_embeddings": 4096,
|
13 |
+
"max_window_layers": 21,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 12,
|
16 |
+
"num_hidden_layers": 28,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_theta": 10000.0,
|
20 |
+
"sliding_window": 32768,
|
21 |
+
"tie_word_embeddings": true,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.43.1",
|
24 |
+
"use_cache": true,
|
25 |
+
"use_mrope": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151936
|
28 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"pad_token_id": 151643,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": [
|
6 |
+
151645,
|
7 |
+
151643
|
8 |
+
],
|
9 |
+
"top_p": 1.0,
|
10 |
+
"temperature": 0.0,
|
11 |
+
"transformers_version": "4.37.0"
|
12 |
+
}
|
13 |
+
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de3b544c2ebbe5143f09498728c1b0786b1b4816255258da5549d482e7e38539
|
3 |
+
size 3087467144
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"additional_special_tokens": ["<|im_start|>", "<|im_end|>"],
|
30 |
+
"bos_token": null,
|
31 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "<|im_end|>",
|
34 |
+
"errors": "replace",
|
35 |
+
"model_max_length": 32768,
|
36 |
+
"pad_token": "<|endoftext|>",
|
37 |
+
"split_special_tokens": false,
|
38 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
39 |
+
"unk_token": null
|
40 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|