--- library_name: peft license: other base_model: LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: exaone_CSAT_test results: [] --- # exaone_CSAT_test This model is a fine-tuned version of [LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4792 - Accuracy: 0.5628 - F1: 0.5965 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 200 - training_steps: 2100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 24.6602 | 0.1121 | 50 | 24.1094 | 0.5477 | 0.5761 | | 12.8586 | 0.2242 | 100 | 6.5703 | 0.5729 | 0.6062 | | 0.3657 | 0.3363 | 150 | 0.4956 | 0.5678 | 0.6005 | | 0.5527 | 0.4484 | 200 | 0.4880 | 0.5678 | 0.6005 | | 0.9587 | 0.5605 | 250 | 0.5098 | 0.5729 | 0.6054 | | 0.9119 | 0.6726 | 300 | 0.4468 | 0.5678 | 0.6016 | | 0.0989 | 0.7848 | 350 | 0.4690 | 0.5729 | 0.6066 | | 0.6981 | 0.8969 | 400 | 0.4612 | 0.5628 | 0.5965 | | 0.5197 | 1.0090 | 450 | 0.4792 | 0.5628 | 0.5965 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3