--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-32B tags: - axolotl - generated_from_trainer datasets: - ToastyPigeon/ali-books model-index: - name: qwen32-girlbooks-ws results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml # git clone https://github.com/axolotl-ai-cloud/axolotl # cd axolotl # git checkout d425d5d3c3ca7644a9da8ed93c3d03f4be0c4854 # pip3 install packaging ninja huggingface_hub[cli] # pip install "cut-cross-entropy[transformers] @ git+https://github.com/apple/ml-cross-entropy.git" # pip3 install -e '.[flash-attn,deepspeed]' # apt update && apt install libopenmpi-dev # pip install mpi4py # huggingface-cli login --token $hf_key && wandb login $wandb_key # python -m axolotl.cli.preprocess qwen-32b-book.yml # accelerate launch -m axolotl.cli.train qwen-32b-book.yml # python -m axolotl.cli.merge_lora qwen-32b-book.yml --lora-on-cpu # huggingface-cli upload ToastyPigeon/new-ms-rp-test-v0-v3 train-workspace/merged . --exclude "*.md" # git clone https://github.com/axolotl-ai-cloud/axolotl && cd axolotl && git checkout d8b4027200de0fe60f4ae0a71272c1a8cb2888f7 && pip3 install packaging ninja huggingface_hub[cli,hf_transfer] && pip3 install -e '.[flash-attn,deepspeed]' && cd .. && huggingface-cli login --token $hf_key && wandb login $wandb_key # Model base_model: Qwen/Qwen2.5-32B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false bf16: true fp16: tf32: false flash_attention: true special_tokens: # Output output_dir: ./train-workspace hub_model_id: ToastyPigeon/qwen32-girlbooks-ws hub_strategy: "checkpoint" resume_from_checkpoint: saves_per_epoch: 4 # Data sequence_len: 4096 # fits min_sample_len: 128 dataset_prepared_path: last_run_prepared datasets: - path: ToastyPigeon/ali-books type: completion field: text data_files: - yuribooks.json - magicgirlsbooks.json warmup_ratio: 0.05 shuffle_merged_datasets: true sample_packing: true #pad_to_sequence_len: true # Batching num_epochs: 2 gradient_accumulation_steps: 2 micro_batch_size: 1 eval_batch_size: 1 # Evaluation #val_set_size: 100 #evals_per_epoch: 10 eval_strategy: "no" eval_table_size: eval_max_new_tokens: 256 eval_sample_packing: true save_safetensors: true # WandB wandb_project: Qwen-Test #wandb_entity: gradient_checkpointing: 'unsloth' #gradient_checkpointing_kwargs: # use_reentrant: false unsloth_cross_entropy_loss: true #unsloth_lora_mlp: true #unsloth_lora_qkv: true #unsloth_lora_o: true # LoRA adapter: qlora lora_model_dir: lora_r: 32 lora_alpha: 64 lora_dropout: 0.5 lora_target_linear: lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj lora_modules_to_save: #peft_layers_to_transform: [35,36,37,38,39] # Optimizer optimizer: paged_ademamix_8bit # adamw_8bit lr_scheduler: cosine learning_rate: 5e-5 cosine_min_lr_ratio: 0.5 weight_decay: 0.01 max_grad_norm: 1.0 # Misc train_on_inputs: false #group_by_length: true early_stopping_patience: local_rank: logging_steps: 1 xformers_attention: debug: deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json # previously blank fsdp: fsdp_config: plugins: - axolotl.integrations.liger.LigerPlugin # - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin #cut_cross_entropy: true liger_rope: true liger_rms_norm: true liger_layer_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: true gc_steps: 10 seed: 69 ```

# qwen32-girlbooks-ws This model is a fine-tuned version of [Qwen/Qwen2.5-32B](https://huggingface.co/Qwen/Qwen2.5-32B) on the ToastyPigeon/ali-books dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 69 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - total_eval_batch_size: 4 - optimizer: Use OptimizerNames.PAGED_ADEMAMIX_8BIT and the args are: No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 8 - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0