Upload 14 files
Browse filesAdd fine-tuned Model
- 1_Pooling/config.json +10 -0
- README.md +164 -3
- config.json +25 -0
- config_sentence_transformers.json +14 -0
- config_setfit.json +12 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- model_info.json +18 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +65 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,164 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SetFit Email Job Status Classifier
|
2 |
+
|
3 |
+
A fine-tuned SetFit model for classifying job application emails into different categories. This model can automatically categorize job-related emails to help track application status and organize your job search process.
|
4 |
+
|
5 |
+
## Model Description
|
6 |
+
|
7 |
+
This model is based on [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) and fine-tuned using SetFit (Sentence Transformer Fine-tuning) for email classification tasks.
|
8 |
+
|
9 |
+
**Base Model:** `sentence-transformers/all-MiniLM-L6-v2`
|
10 |
+
**Framework:** SetFit
|
11 |
+
**Task:** Multi-class text classification
|
12 |
+
**Language:** English
|
13 |
+
|
14 |
+
## Model Performance
|
15 |
+
|
16 |
+
- **Overall Accuracy:** 90%
|
17 |
+
- **Training Samples:** 235
|
18 |
+
- **Test Samples:** 59
|
19 |
+
- **Classes:** 7
|
20 |
+
|
21 |
+
## Intended Use
|
22 |
+
|
23 |
+
### Primary Use Cases
|
24 |
+
|
25 |
+
- **Job Search Management:** Automatically categorize job-related emails
|
26 |
+
- **Email Organization:** Sort incoming emails by job application status
|
27 |
+
- **Application Tracking:** Monitor progress of job applications
|
28 |
+
- **Workflow Automation:** Integrate into email filtering systems
|
29 |
+
|
30 |
+
### Supported Categories
|
31 |
+
|
32 |
+
1. **Applied** - Confirmation emails after submitting applications
|
33 |
+
2. **Interview** - Interview invitations and scheduling emails
|
34 |
+
3. **Next-Step** - Follow-up emails about next steps in the process
|
35 |
+
4. **Not Job Related** - Non-job related emails
|
36 |
+
5. **Not Job Status Update** - Job-related but not status updates
|
37 |
+
6. **Offer** - Job offers and offer-related communications
|
38 |
+
7. **Rejected** - Rejection notifications
|
39 |
+
|
40 |
+
## How to Use
|
41 |
+
|
42 |
+
### Installation
|
43 |
+
|
44 |
+
```bash
|
45 |
+
pip install setfit
|
46 |
+
```
|
47 |
+
|
48 |
+
### Quick Start
|
49 |
+
|
50 |
+
```python
|
51 |
+
from setfit import SetFitModel
|
52 |
+
|
53 |
+
# Load the model
|
54 |
+
model = SetFitModel.from_pretrained("your-username/setfit-email-classifier")
|
55 |
+
|
56 |
+
# Classify emails
|
57 |
+
emails = [
|
58 |
+
"Thank you for your application. We will review it and get back to you.",
|
59 |
+
"We would like to schedule an interview with you for next Tuesday.",
|
60 |
+
"Unfortunately, we have decided to move forward with other candidates.",
|
61 |
+
"Congratulations! We would like to offer you the position."
|
62 |
+
]
|
63 |
+
|
64 |
+
predictions = model(emails)
|
65 |
+
print(predictions)
|
66 |
+
# Output: ['applied', 'interview', 'rejected', 'offer']
|
67 |
+
```
|
68 |
+
|
69 |
+
### Batch Processing
|
70 |
+
|
71 |
+
```python
|
72 |
+
import pandas as pd
|
73 |
+
|
74 |
+
# Process multiple emails
|
75 |
+
df = pd.DataFrame({
|
76 |
+
'subject': ['Application Confirmation', 'Interview Invitation', 'Unfortunately...'],
|
77 |
+
'body': ['Thank you for applying...', 'We would like to schedule...', 'We regret to inform...']
|
78 |
+
})
|
79 |
+
|
80 |
+
# Combine subject and body
|
81 |
+
df['email_text'] = df['subject'] + ' ' + df['body']
|
82 |
+
|
83 |
+
# Get predictions
|
84 |
+
predictions = model(df['email_text'].tolist())
|
85 |
+
df['classification'] = predictions
|
86 |
+
|
87 |
+
print(df[['subject', 'classification']])
|
88 |
+
```
|
89 |
+
|
90 |
+
### Confidence Scores
|
91 |
+
|
92 |
+
```python
|
93 |
+
# Get prediction probabilities
|
94 |
+
email_text = "We would like to schedule a phone interview with you."
|
95 |
+
embeddings = model.model_body.encode([email_text])
|
96 |
+
probabilities = model.model_head.predict_proba(embeddings)[0]
|
97 |
+
classes = model.model_head.classes_
|
98 |
+
|
99 |
+
# Display results
|
100 |
+
prediction = model([email_text])[0]
|
101 |
+
print(f"Prediction: {prediction}")
|
102 |
+
|
103 |
+
for class_name, prob in zip(classes, probabilities):
|
104 |
+
print(f"{class_name}: {prob:.3f}")
|
105 |
+
```
|
106 |
+
|
107 |
+
## Training Data
|
108 |
+
|
109 |
+
The model was trained on a dataset of 294 job-related emails with the following distribution:
|
110 |
+
|
111 |
+
- **Not Job Related:** 53 samples
|
112 |
+
- **Rejected:** 47 samples
|
113 |
+
- **Interview:** 47 samples
|
114 |
+
- **Not Job Status Update:** 46 samples
|
115 |
+
- **Applied:** 43 samples
|
116 |
+
- **Next-Step:** 30 samples
|
117 |
+
- **Offer:** 28 samples
|
118 |
+
|
119 |
+
## Training Details
|
120 |
+
|
121 |
+
**Training Framework:** SetFit
|
122 |
+
**Training Time:** ~1 hour
|
123 |
+
**Hardware:** Local training (CPU/GPU)
|
124 |
+
**Optimization:** Contrastive learning + classification head fine-tuning
|
125 |
+
|
126 |
+
### Training Parameters
|
127 |
+
|
128 |
+
- **Base Model:** sentence-transformers/all-MiniLM-L6-v2
|
129 |
+
- **Train/Test Split:** 80/20
|
130 |
+
- **Stratified Split:** Yes (maintains class distribution)
|
131 |
+
- **Random State:** 42 (reproducible results)
|
132 |
+
|
133 |
+
## Limitations
|
134 |
+
|
135 |
+
- **Domain Specific:** Trained specifically on job application emails
|
136 |
+
- **English Only:** Optimized for English language emails
|
137 |
+
- **Class Imbalance:** Some categories have fewer training examples
|
138 |
+
- **Context Length:** Best performance on email-length texts (not very long documents)
|
139 |
+
- **Temporal Drift:** Performance may degrade on very recent email formats/styles
|
140 |
+
|
141 |
+
## Bias and Fairness
|
142 |
+
|
143 |
+
- The model may reflect biases present in the training data
|
144 |
+
- Performance may vary across different industries, company sizes, or communication styles
|
145 |
+
- Regular evaluation recommended when deployed in production
|
146 |
+
|
147 |
+
## Citation
|
148 |
+
|
149 |
+
If you use this model, please cite:
|
150 |
+
|
151 |
+
```bibtex
|
152 |
+
@misc{setfit-email-classifier-2025,
|
153 |
+
title={SetFit Email Job Status Classifier},
|
154 |
+
author={Oluwatomiwa Jinadu},
|
155 |
+
year={2025},
|
156 |
+
howpublished={\\url{https://huggingface.co/Tomiwajin/setfit_email_classifier}},
|
157 |
+
}
|
158 |
+
```
|
159 |
+
|
160 |
+
---
|
161 |
+
|
162 |
+
**Model Card Authors:** Oluwatomiwa Jinadu
|
163 |
+
**Model Card Date:** September 2025
|
164 |
+
**Model Version:** 1.0
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"dtype": "float32",
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"transformers_version": "4.56.1",
|
22 |
+
"type_vocab_size": 2,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 30522
|
25 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "5.1.0",
|
4 |
+
"transformers": "4.56.1",
|
5 |
+
"pytorch": "2.2.2"
|
6 |
+
},
|
7 |
+
"model_type": "SentenceTransformer",
|
8 |
+
"prompts": {
|
9 |
+
"query": "",
|
10 |
+
"document": ""
|
11 |
+
},
|
12 |
+
"default_prompt_name": null,
|
13 |
+
"similarity_fn_name": "cosine"
|
14 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": [
|
3 |
+
"applied",
|
4 |
+
"interview",
|
5 |
+
"next-step",
|
6 |
+
"not_job_related",
|
7 |
+
"not_job_status_update",
|
8 |
+
"offer",
|
9 |
+
"rejected"
|
10 |
+
],
|
11 |
+
"normalize_embeddings": false
|
12 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:deec023621bfb0a09323c23fcb6a2b2cd73367b983cd8ae61425e23d91084a0e
|
3 |
+
size 90864192
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4203f0bf3387d026cb71eb9b2e4fa5262c460b42e7052d57d10296112c7f1a5a
|
3 |
+
size 22991
|
model_info.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_path": "setfit_email_classifier_20250909_135238",
|
3 |
+
"timestamp": "20250909_135238",
|
4 |
+
"base_model": "sentence-transformers/all-MiniLM-L6-v2",
|
5 |
+
"training_date": "2025-09-09T13:52:39.181047",
|
6 |
+
"model_type": "SetFit Email Classifier",
|
7 |
+
"training_samples": 235,
|
8 |
+
"test_samples": 59,
|
9 |
+
"classes": [
|
10 |
+
"applied",
|
11 |
+
"interview",
|
12 |
+
"next-step",
|
13 |
+
"not_job_related",
|
14 |
+
"not_job_status_update",
|
15 |
+
"offer",
|
16 |
+
"rejected"
|
17 |
+
]
|
18 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"max_length": 128,
|
51 |
+
"model_max_length": 256,
|
52 |
+
"never_split": null,
|
53 |
+
"pad_to_multiple_of": null,
|
54 |
+
"pad_token": "[PAD]",
|
55 |
+
"pad_token_type_id": 0,
|
56 |
+
"padding_side": "right",
|
57 |
+
"sep_token": "[SEP]",
|
58 |
+
"stride": 0,
|
59 |
+
"strip_accents": null,
|
60 |
+
"tokenize_chinese_chars": true,
|
61 |
+
"tokenizer_class": "BertTokenizer",
|
62 |
+
"truncation_side": "right",
|
63 |
+
"truncation_strategy": "longest_first",
|
64 |
+
"unk_token": "[UNK]"
|
65 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|