Update README.md
Browse files
README.md
CHANGED
@@ -32,19 +32,13 @@ tags:
|
|
32 |
import torch
|
33 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
# 2) モデルとトークナイザーをロード
|
39 |
-
model = AutoModelForTokenClassification.from_pretrained(checkpoint_dir)
|
40 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint_dir, use_fast=True)
|
41 |
-
|
42 |
-
# 3) デバイス設定
|
43 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
44 |
model.to(device)
|
45 |
model.eval()
|
46 |
|
47 |
-
# 4) 推論用
|
48 |
def predict_text(text: str):
|
49 |
enc = tokenizer(
|
50 |
text,
|
@@ -59,14 +53,10 @@ def predict_text(text: str):
|
|
59 |
outputs = model(**enc)
|
60 |
logits = outputs.logits
|
61 |
|
62 |
-
# 各トークンごとの予測ラベルIDを取得
|
63 |
pred_ids = torch.argmax(logits, dim=-1)[0].cpu().tolist()
|
64 |
-
|
65 |
-
# トークン列と IOB ラベル列に変換
|
66 |
tokens = tokenizer.convert_ids_to_tokens(enc["input_ids"][0])
|
67 |
id2label = model.config.id2label
|
68 |
|
69 |
-
# special tokens を除いて結果を整形
|
70 |
result = []
|
71 |
for tok, pid in zip(tokens, pred_ids):
|
72 |
if tok in tokenizer.all_special_tokens:
|
@@ -74,7 +64,6 @@ def predict_text(text: str):
|
|
74 |
result.append((tok, id2label[pid]))
|
75 |
return result
|
76 |
|
77 |
-
# 5) 実際に試す
|
78 |
sample = "症例】53歳女性。発熱と嘔気を認め、プレドニゾロンを中断しました。"
|
79 |
for tok, lab in predict_text(sample):
|
80 |
print(f"{tok}\t{lab}")
|
|
|
32 |
import torch
|
33 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
34 |
|
35 |
+
model_dir = "Tomohiro/MedTXTNER"
|
36 |
+
model = AutoModelForTokenClassification.from_pretrained(model_dir)
|
|
|
|
|
|
|
37 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint_dir, use_fast=True)
|
|
|
|
|
38 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
39 |
model.to(device)
|
40 |
model.eval()
|
41 |
|
|
|
42 |
def predict_text(text: str):
|
43 |
enc = tokenizer(
|
44 |
text,
|
|
|
53 |
outputs = model(**enc)
|
54 |
logits = outputs.logits
|
55 |
|
|
|
56 |
pred_ids = torch.argmax(logits, dim=-1)[0].cpu().tolist()
|
|
|
|
|
57 |
tokens = tokenizer.convert_ids_to_tokens(enc["input_ids"][0])
|
58 |
id2label = model.config.id2label
|
59 |
|
|
|
60 |
result = []
|
61 |
for tok, pid in zip(tokens, pred_ids):
|
62 |
if tok in tokenizer.all_special_tokens:
|
|
|
64 |
result.append((tok, id2label[pid]))
|
65 |
return result
|
66 |
|
|
|
67 |
sample = "症例】53歳女性。発熱と嘔気を認め、プレドニゾロンを中断しました。"
|
68 |
for tok, lab in predict_text(sample):
|
69 |
print(f"{tok}\t{lab}")
|